
Two rods of length a and b slide along the x-axis and y-axis respectively in such a manner that their ends are concyclic. The locus of the centre of the circle passing through the end point is
A) $4({{x}^{2}}+{{y}^{2}})={{a}^{2}}+{{b}^{2}}$
B) ${{x}^{2}}+{{y}^{2}}={{a}^{2}}+{{b}^{2}}$
C) $4({{x}^{2}}-{{y}^{2}})={{a}^{2}}-{{b}^{2}}$
D) ${{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}$
Answer
517.5k+ views
Hint: A set of points are said to be concyclic if they lie on a common circle. All concyclic points are at the same distance from the centre of the circle. Also, a locus is a set of all points, a line, a line segment, a curve whose location satisfies or is determined by one or more specified conditions.
Complete step by step solution:
Let the four points be A, B, C, D. As they are concyclic which means a circle would pass through them.
Let the equation of the circle be
${{x}^{2}}+{{y}^{2}}-2xh-2yk+c=0$ -----(1)
Which means the centre of the circle would be (h,k).
As the rod ‘a’ slide along x-axis which means
$y=0$. So we get
${{x}^{2}}-2xh+c=0$ -------(2)
Let A and B be $({{x}_{1}},0)$ and $({{x}_{2}},0)$. So we can find ${{x}_{1}}$ and ${{x}_{2}}$ by using equation(2).
Now we have to find AB
$AB={{x}_{2}}-{{x}_{1}}=\sqrt{({{x}_{2}}}+{{x}_{1}}{{)}^{2}}-4{{x}_{1}}{{x}_{2}}=a$
(Or)
${{({{x}_{2}}+{{x}_{1}})}^{2}}-4{{x}_{1}}{{x}_{2}}={{a}^{2}}$ -------(3)
Now by using equation (2)
${{x}_{1}}+{{x}_{2}}=2h,{{x}_{1}}{{x}_{2}}=c$
Now by putting values of ${{x}_{1}}+{{x}_{2}}$ and ${{x}_{1}}{{x}_{2}}$ in equation (3)
$4{{h}^{2}}-4c={{a}^{2}}$ -----(4)
Similarly rod ‘b’ slides along y-axis which means
$x=0$. So we get
${{y}^{2}}-2yk+c=0$ -----(5)
Let C and D be $(0,{{y}_{1}}) $ and ($(0,{{y}_{2}})$. So we can find ${{y}_{1}}$ and ${{y}_{2}}$ by equation (5)
So, ${{y}_{1}}+{{y}_{2}}=2k,{{y}_{1}}{{y}_{2}}=c$.
Similarly, $C{{D}^{2}}={{({{y}_{2}}-{{y}_{1}})}^{2}}={{({{y}_{1}}+{{y}_{2}})}^{2}}+4{{y}_{1}}{{y}_{2}}={{b}^{2}}$ -(6)
Now by putting the value of ${{y}_{1}}+{{y}_{2}},{{y}_{1}}{{y}_{2}}$ in equation (6)
$4{{k}^{2}}-4c={{b}^{2}}$ ------(7)
Now by subtracting equation (7) from equation (4)
$4{{h}^{2}}-4{{k}^{2}}={{a}^{2}}-{{b}^{2}}$
So the locus of the centre of the circle is option (C) $4({{x}^{2}}-{{y}^{2}})={{a}^{2}}-{{b}^{2}}$.
Note:
Two or three points in the plane that do not all fall on a straight line are concyclic but four or more such points in the plane are not necessarily concyclic. The locus describes the position of points which obey a certain rule.
Complete step by step solution:
Let the four points be A, B, C, D. As they are concyclic which means a circle would pass through them.
Let the equation of the circle be
${{x}^{2}}+{{y}^{2}}-2xh-2yk+c=0$ -----(1)
Which means the centre of the circle would be (h,k).
As the rod ‘a’ slide along x-axis which means
$y=0$. So we get
${{x}^{2}}-2xh+c=0$ -------(2)
Let A and B be $({{x}_{1}},0)$ and $({{x}_{2}},0)$. So we can find ${{x}_{1}}$ and ${{x}_{2}}$ by using equation(2).
Now we have to find AB
$AB={{x}_{2}}-{{x}_{1}}=\sqrt{({{x}_{2}}}+{{x}_{1}}{{)}^{2}}-4{{x}_{1}}{{x}_{2}}=a$
(Or)
${{({{x}_{2}}+{{x}_{1}})}^{2}}-4{{x}_{1}}{{x}_{2}}={{a}^{2}}$ -------(3)
Now by using equation (2)
${{x}_{1}}+{{x}_{2}}=2h,{{x}_{1}}{{x}_{2}}=c$
Now by putting values of ${{x}_{1}}+{{x}_{2}}$ and ${{x}_{1}}{{x}_{2}}$ in equation (3)
$4{{h}^{2}}-4c={{a}^{2}}$ -----(4)
Similarly rod ‘b’ slides along y-axis which means
$x=0$. So we get
${{y}^{2}}-2yk+c=0$ -----(5)
Let C and D be $(0,{{y}_{1}}) $ and ($(0,{{y}_{2}})$. So we can find ${{y}_{1}}$ and ${{y}_{2}}$ by equation (5)
So, ${{y}_{1}}+{{y}_{2}}=2k,{{y}_{1}}{{y}_{2}}=c$.
Similarly, $C{{D}^{2}}={{({{y}_{2}}-{{y}_{1}})}^{2}}={{({{y}_{1}}+{{y}_{2}})}^{2}}+4{{y}_{1}}{{y}_{2}}={{b}^{2}}$ -(6)
Now by putting the value of ${{y}_{1}}+{{y}_{2}},{{y}_{1}}{{y}_{2}}$ in equation (6)
$4{{k}^{2}}-4c={{b}^{2}}$ ------(7)
Now by subtracting equation (7) from equation (4)
$4{{h}^{2}}-4{{k}^{2}}={{a}^{2}}-{{b}^{2}}$
So the locus of the centre of the circle is option (C) $4({{x}^{2}}-{{y}^{2}})={{a}^{2}}-{{b}^{2}}$.
Note:
Two or three points in the plane that do not all fall on a straight line are concyclic but four or more such points in the plane are not necessarily concyclic. The locus describes the position of points which obey a certain rule.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

