Answer
Verified
389.7k+ views
Hint: A set of points are said to be concyclic if they lie on a common circle. All concyclic points are at the same distance from the centre of the circle. Also, a locus is a set of all points, a line, a line segment, a curve whose location satisfies or is determined by one or more specified conditions.
Complete step by step solution:
Let the four points be A, B, C, D. As they are concyclic which means a circle would pass through them.
Let the equation of the circle be
${{x}^{2}}+{{y}^{2}}-2xh-2yk+c=0$ -----(1)
Which means the centre of the circle would be (h,k).
As the rod ‘a’ slide along x-axis which means
$y=0$. So we get
${{x}^{2}}-2xh+c=0$ -------(2)
Let A and B be $({{x}_{1}},0)$ and $({{x}_{2}},0)$. So we can find ${{x}_{1}}$ and ${{x}_{2}}$ by using equation(2).
Now we have to find AB
$AB={{x}_{2}}-{{x}_{1}}=\sqrt{({{x}_{2}}}+{{x}_{1}}{{)}^{2}}-4{{x}_{1}}{{x}_{2}}=a$
(Or)
${{({{x}_{2}}+{{x}_{1}})}^{2}}-4{{x}_{1}}{{x}_{2}}={{a}^{2}}$ -------(3)
Now by using equation (2)
${{x}_{1}}+{{x}_{2}}=2h,{{x}_{1}}{{x}_{2}}=c$
Now by putting values of ${{x}_{1}}+{{x}_{2}}$ and ${{x}_{1}}{{x}_{2}}$ in equation (3)
$4{{h}^{2}}-4c={{a}^{2}}$ -----(4)
Similarly rod ‘b’ slides along y-axis which means
$x=0$. So we get
${{y}^{2}}-2yk+c=0$ -----(5)
Let C and D be $(0,{{y}_{1}}) $ and ($(0,{{y}_{2}})$. So we can find ${{y}_{1}}$ and ${{y}_{2}}$ by equation (5)
So, ${{y}_{1}}+{{y}_{2}}=2k,{{y}_{1}}{{y}_{2}}=c$.
Similarly, $C{{D}^{2}}={{({{y}_{2}}-{{y}_{1}})}^{2}}={{({{y}_{1}}+{{y}_{2}})}^{2}}+4{{y}_{1}}{{y}_{2}}={{b}^{2}}$ -(6)
Now by putting the value of ${{y}_{1}}+{{y}_{2}},{{y}_{1}}{{y}_{2}}$ in equation (6)
$4{{k}^{2}}-4c={{b}^{2}}$ ------(7)
Now by subtracting equation (7) from equation (4)
$4{{h}^{2}}-4{{k}^{2}}={{a}^{2}}-{{b}^{2}}$
So the locus of the centre of the circle is option (C) $4({{x}^{2}}-{{y}^{2}})={{a}^{2}}-{{b}^{2}}$.
Note:
Two or three points in the plane that do not all fall on a straight line are concyclic but four or more such points in the plane are not necessarily concyclic. The locus describes the position of points which obey a certain rule.
Complete step by step solution:
Let the four points be A, B, C, D. As they are concyclic which means a circle would pass through them.
Let the equation of the circle be
${{x}^{2}}+{{y}^{2}}-2xh-2yk+c=0$ -----(1)
Which means the centre of the circle would be (h,k).
As the rod ‘a’ slide along x-axis which means
$y=0$. So we get
${{x}^{2}}-2xh+c=0$ -------(2)
Let A and B be $({{x}_{1}},0)$ and $({{x}_{2}},0)$. So we can find ${{x}_{1}}$ and ${{x}_{2}}$ by using equation(2).
Now we have to find AB
$AB={{x}_{2}}-{{x}_{1}}=\sqrt{({{x}_{2}}}+{{x}_{1}}{{)}^{2}}-4{{x}_{1}}{{x}_{2}}=a$
(Or)
${{({{x}_{2}}+{{x}_{1}})}^{2}}-4{{x}_{1}}{{x}_{2}}={{a}^{2}}$ -------(3)
Now by using equation (2)
${{x}_{1}}+{{x}_{2}}=2h,{{x}_{1}}{{x}_{2}}=c$
Now by putting values of ${{x}_{1}}+{{x}_{2}}$ and ${{x}_{1}}{{x}_{2}}$ in equation (3)
$4{{h}^{2}}-4c={{a}^{2}}$ -----(4)
Similarly rod ‘b’ slides along y-axis which means
$x=0$. So we get
${{y}^{2}}-2yk+c=0$ -----(5)
Let C and D be $(0,{{y}_{1}}) $ and ($(0,{{y}_{2}})$. So we can find ${{y}_{1}}$ and ${{y}_{2}}$ by equation (5)
So, ${{y}_{1}}+{{y}_{2}}=2k,{{y}_{1}}{{y}_{2}}=c$.
Similarly, $C{{D}^{2}}={{({{y}_{2}}-{{y}_{1}})}^{2}}={{({{y}_{1}}+{{y}_{2}})}^{2}}+4{{y}_{1}}{{y}_{2}}={{b}^{2}}$ -(6)
Now by putting the value of ${{y}_{1}}+{{y}_{2}},{{y}_{1}}{{y}_{2}}$ in equation (6)
$4{{k}^{2}}-4c={{b}^{2}}$ ------(7)
Now by subtracting equation (7) from equation (4)
$4{{h}^{2}}-4{{k}^{2}}={{a}^{2}}-{{b}^{2}}$
So the locus of the centre of the circle is option (C) $4({{x}^{2}}-{{y}^{2}})={{a}^{2}}-{{b}^{2}}$.
Note:
Two or three points in the plane that do not all fall on a straight line are concyclic but four or more such points in the plane are not necessarily concyclic. The locus describes the position of points which obey a certain rule.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE