Answer

Verified

380.4k+ views

**Hint:**In this question we need to determine which of the statements regarding the magnetic field $\vec B$ is (are) true. We will construct a figure according to the given question. Then, by using that we will consider each statement and determine the given statements are true or false.

**Formula used:**

Magnetic field can be calculated by the Biot savart’s law whose expression be given by $dB = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{Idr \times r}}{{{r^3}}}$

Magnetic field of straight wire along positive x-axis be given by the formula,

$B = \dfrac{{{\mu _0}I}}{{4\pi r}}\left( {sin{\theta _1} + \sin {\theta _2}} \right)$$\widehat k$

where ${\theta _{1,}}{\theta _2}$ are the angles corresponding to the two ends of the wire.

**Complete step by step answer:**

Let us consider each statement and determine if the given statements are true or false.

A. If ${I_1} = {I_2}$,

Magnetic fields along the two wires cancel each other at the origin. $\vec B = 0$ . Hence $\left( {{{\vec B}_{net}}} \right)$ at origin is equal to $\vec B$ due to the loop, which is non-zero. So, $\vec B$ cannot be equal to zero at the origin $\left( {0,0,0} \right)$.So, this statement is false.

B. If ${I_1} > 0$ and ${I_2} < 0$,

Magnetic field,$\vec B$ at origin due to straight line are along $ + \vec k$ direction (as ${I_1}$ is long the positive R direction) and magnetic field,$\vec B$ due to loop is along $ - \vec k$ direction. Then $\vec B$ can be equal to zero at the origin $\left( {0,0,0} \right)$.So, this statement is true.

C. If ${I_2} < 0$ and ${I_1} > 0$,

Magnetic field,$\vec B$ at origin due to straight line will be along $ - \vec k$ direction and magnetic field,$\vec B$ due to loop is along $ - \overrightarrow k $ direction. Then $\vec B$ cannot be equal to zero at the origin $\left( {0,0,0} \right)$.So, this statement is false.

D. At center of loop, magnetic field, $\vec B$ due to the wires will cancel each other effect (as ${I_1} = {I_2}$) , then the magnetic field at the center of the loop is $\overrightarrow B = \dfrac{{{\mu _0}I}}{{2R}}\left( { - \widehat k} \right)$.So, this statement is also true.

**Hence, correct options are B and D.**

**Note:**It is important to note here that the electric current in a circular loop creates a magnetic field which is concentrated in the center of the loop than the outside. The magnetic field lines of the infinite wire are circular and centered at the wire, and they are identical in every plane perpendicular to the wire.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE