
Two free positive charges $4q$ and $q$ are kept at a distance $l$ apart. What charge $Q$ is needed to achieve equilibrium for the entire system and where should it be placed from charge $q$?
Answer
505.8k+ views
Hint:Let us first talk about charge. When matter is put in an electromagnetic field, it acquires an electric charge, which causes it to undergo a force. Positive and negative charges are the two forms of electric charge commonly carried by protons and electrons respectively.
Complete step by step answer:
The electrostatic force $F$ between two point charges ${q_1}$ and ${q_2}$ is proportional to the product of their magnitudes and inversely proportional to the square of their distance. Like charges repel one another, while opposite charges draw one another.
$F = k\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Here, $F = $electric force, $k = $Coulomb constant, ${q_{1,}}{q_2} = $Charges and $r = $Distance of separation.
Now, let us solve the problem: Let "$r$" be the distance between the charge $q$ and the equilibrium state of $Q$.
Total Force acting on Charge $q$ and $4q$:
$F = \dfrac{{kqQ}}{{{r^2}}} + \dfrac{{k4qQ}}{{{{(l - r)}^2}}}$
For \[Q\] to be in equilibrium, $F$ should be equated to zero.
$\dfrac{{kqQ}}{{{r^2}}} + \dfrac{{k4qQ}}{{{{(l - r)}^2}}} = 0$
$\Rightarrow {(l - r)^2} = 4{r^2}$
$\Rightarrow l - r = 2r$...................[By taking square root both the sides]
$\therefore r = \dfrac{l}{3}$
Let's compare the equilibrium of 4q charge to find out the value of charge:
$k4qQ\dfrac{1}{{{{(l - r)}^2}}} + 4kqq\dfrac{1}{{{l^2}}} = 0$
$\therefore Q = - \dfrac{{4q}}{9}$
Hence, the charge $Q$ needed to achieve equilibrium for the entire system is $-\dfrac{{4q}}{9}$ and it should be placed at a distance of $\dfrac{l}{3}$ from charge $q$.
Note:To determine the direction of the force, you must apply the rule of attraction, which states that opposite charges attract and equal charges repel. Two opposite charges (positive and negative) repel each other, while two positives (or negatives) attract each other.
Complete step by step answer:
The electrostatic force $F$ between two point charges ${q_1}$ and ${q_2}$ is proportional to the product of their magnitudes and inversely proportional to the square of their distance. Like charges repel one another, while opposite charges draw one another.
$F = k\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Here, $F = $electric force, $k = $Coulomb constant, ${q_{1,}}{q_2} = $Charges and $r = $Distance of separation.
Now, let us solve the problem: Let "$r$" be the distance between the charge $q$ and the equilibrium state of $Q$.
Total Force acting on Charge $q$ and $4q$:
$F = \dfrac{{kqQ}}{{{r^2}}} + \dfrac{{k4qQ}}{{{{(l - r)}^2}}}$
For \[Q\] to be in equilibrium, $F$ should be equated to zero.
$\dfrac{{kqQ}}{{{r^2}}} + \dfrac{{k4qQ}}{{{{(l - r)}^2}}} = 0$
$\Rightarrow {(l - r)^2} = 4{r^2}$
$\Rightarrow l - r = 2r$...................[By taking square root both the sides]
$\therefore r = \dfrac{l}{3}$
Let's compare the equilibrium of 4q charge to find out the value of charge:
$k4qQ\dfrac{1}{{{{(l - r)}^2}}} + 4kqq\dfrac{1}{{{l^2}}} = 0$
$\therefore Q = - \dfrac{{4q}}{9}$
Hence, the charge $Q$ needed to achieve equilibrium for the entire system is $-\dfrac{{4q}}{9}$ and it should be placed at a distance of $\dfrac{l}{3}$ from charge $q$.
Note:To determine the direction of the force, you must apply the rule of attraction, which states that opposite charges attract and equal charges repel. Two opposite charges (positive and negative) repel each other, while two positives (or negatives) attract each other.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

