Answer
Verified
493.5k+ views
Hint- To determine the probability, first we have to define the event and make the sample space and then proceed further using probability definition.
Given that the two dice are thrown together. So the total possible conditions will be
$6 \times 6 = 36$
Let ${E_1}$ be the event of getting sum as $5$
The possible combination of the top faces of the die for the event ${E_1}$
${E_1} = \{ (1,4),(4,1),(2,3),(3,2)\} $
The probability of event \[\;\;{E_1} = P({E_1}) = \dfrac{4}{{36}}\]
Let ${E_2}$ be the event of getting a number greater or equal on the top face of the second die than that of the first die.
The possible combinations of top face of die for event ${E_2}$
$
{E_2} = \{ (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6), \\
(3,3),(3,4),(3,5),(3,6), \\
(4,4),(4,5),(4,6), \\
(5,5),(5,6), \\
(6,6)\} \\
$
The probability of the event ${E_2} = P({E_2}) = \dfrac{{21}}{{36}}$
Let $E$ be the event that one of the two events ${E_1}$ or ${E_2}$ will occur
Hence the probability of event $E$ will be sum of the probability of events ${E_1}$and ${E_2}$
$
P(E) = P({E_1}) + P({E_2}) \\
P(E) = \dfrac{4}{{36}} + \dfrac{{21}}{{36}} = \dfrac{{25}}{{36}} \\
$
Note- In this type of numerical first try to declare the events and make the sample space and keep in mind the conditions given in the question and proceed according to the conditions. Probability of occurrence of an event is ratio of number of favorable outcomes over total number of possible outcomes of the given event.
Given that the two dice are thrown together. So the total possible conditions will be
$6 \times 6 = 36$
Let ${E_1}$ be the event of getting sum as $5$
The possible combination of the top faces of the die for the event ${E_1}$
${E_1} = \{ (1,4),(4,1),(2,3),(3,2)\} $
The probability of event \[\;\;{E_1} = P({E_1}) = \dfrac{4}{{36}}\]
Let ${E_2}$ be the event of getting a number greater or equal on the top face of the second die than that of the first die.
The possible combinations of top face of die for event ${E_2}$
$
{E_2} = \{ (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6), \\
(3,3),(3,4),(3,5),(3,6), \\
(4,4),(4,5),(4,6), \\
(5,5),(5,6), \\
(6,6)\} \\
$
The probability of the event ${E_2} = P({E_2}) = \dfrac{{21}}{{36}}$
Let $E$ be the event that one of the two events ${E_1}$ or ${E_2}$ will occur
Hence the probability of event $E$ will be sum of the probability of events ${E_1}$and ${E_2}$
$
P(E) = P({E_1}) + P({E_2}) \\
P(E) = \dfrac{4}{{36}} + \dfrac{{21}}{{36}} = \dfrac{{25}}{{36}} \\
$
Note- In this type of numerical first try to declare the events and make the sample space and keep in mind the conditions given in the question and proceed according to the conditions. Probability of occurrence of an event is ratio of number of favorable outcomes over total number of possible outcomes of the given event.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE