
Two dice are thrown simultaneously. What is the probability that:
(i) 5 will not come upon either of them
(ii) 5 will come upon at least one
(iii) 5 will come up at both the dice
Answer
609k+ views
Hint: Use probability=favorable cases/ total cases.
In a throw of pair of dice, total no of possible outcomes $ = 36\left( {6 \times 6} \right)$ which are:
$
\left( {1,1} \right)\left( {1,2} \right)\left( {1,3} \right)\left( {1,4} \right)\left( {1,5} \right)\left( {1,6} \right) \\
\left( {2,1} \right)\left( {2,2} \right)\left( {2,3} \right)\left( {2,4} \right)\left( {2,5} \right)\left( {2,6} \right) \\
\left( {3,1} \right)\left( {3,2} \right)\left( {3,3} \right)\left( {3,4} \right)\left( {3,5} \right)\left( {3,6} \right) \\
\left( {4,1} \right)\left( {4,2} \right)\left( {4,3} \right)\left( {4,4} \right)\left( {4,5} \right)\left( {4,6} \right) \\
\left( {5,1} \right)\left( {5,2} \right)\left( {5,3} \right)\left( {5,4} \right)\left( {5,5} \right)\left( {5,6} \right) \\
\left( {6,1} \right)\left( {6,2} \right)\left( {6,3} \right)\left( {6,4} \right)\left( {6,5} \right)\left( {6,6} \right) \\
$
(i) Let $E$ be the event of not getting a 5 on either of the two dice
Number of favorable outcomes=25
Total number of outcomes=36
$P\left( E \right) = \dfrac{{25}}{{36}}$
(ii) Let $E$ be the event of getting a 5 at least once
Number of favorable outcomes=11
Total number of outcomes=36
$P\left( E \right) = \dfrac{{11}}{{36}}$
(iii) Let $E$ be the event of getting a 5 on both dice
Number of favorable outcomes=1
Total number of outcomes=36
$P\left( E \right) = \dfrac{1}{{36}}$
Note: In the above solution the table made at the top containing the list of all possible outcomes is known as sample space of the event. In all the three parts of the solution, a number of favorable outcomes has been found out after counting the same from the above table.
In a throw of pair of dice, total no of possible outcomes $ = 36\left( {6 \times 6} \right)$ which are:
$
\left( {1,1} \right)\left( {1,2} \right)\left( {1,3} \right)\left( {1,4} \right)\left( {1,5} \right)\left( {1,6} \right) \\
\left( {2,1} \right)\left( {2,2} \right)\left( {2,3} \right)\left( {2,4} \right)\left( {2,5} \right)\left( {2,6} \right) \\
\left( {3,1} \right)\left( {3,2} \right)\left( {3,3} \right)\left( {3,4} \right)\left( {3,5} \right)\left( {3,6} \right) \\
\left( {4,1} \right)\left( {4,2} \right)\left( {4,3} \right)\left( {4,4} \right)\left( {4,5} \right)\left( {4,6} \right) \\
\left( {5,1} \right)\left( {5,2} \right)\left( {5,3} \right)\left( {5,4} \right)\left( {5,5} \right)\left( {5,6} \right) \\
\left( {6,1} \right)\left( {6,2} \right)\left( {6,3} \right)\left( {6,4} \right)\left( {6,5} \right)\left( {6,6} \right) \\
$
(i) Let $E$ be the event of not getting a 5 on either of the two dice
Number of favorable outcomes=25
Total number of outcomes=36
$P\left( E \right) = \dfrac{{25}}{{36}}$
(ii) Let $E$ be the event of getting a 5 at least once
Number of favorable outcomes=11
Total number of outcomes=36
$P\left( E \right) = \dfrac{{11}}{{36}}$
(iii) Let $E$ be the event of getting a 5 on both dice
Number of favorable outcomes=1
Total number of outcomes=36
$P\left( E \right) = \dfrac{1}{{36}}$
Note: In the above solution the table made at the top containing the list of all possible outcomes is known as sample space of the event. In all the three parts of the solution, a number of favorable outcomes has been found out after counting the same from the above table.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

