
Two coils are at fixed locations. When coil $1$ has no current and the current in coil $2$ increases at the rate\[15.0\,A/s\], the emf in coil $1$ is $25.0\,mV.$
(a) What is their mutual inductance?
(b) when coil $2$ has no current and coil $1$has a current of $3.60A,$ what is the flux linkage in coil $2?$.
Answer
506.1k+ views
Hint:Let us first understand about emf. The electric potential produced by an electrochemical cell or by changing the magnetic field is known as electromotive force. Electromotive force is commonly abbreviated as EMF.
Complete step by step answer:
(a) Let us understand mutual inductance. This is the inductance set up between two coils with a connection between their fluxes. Henry is the SI unit of mutual inductance. The basic operating principle of the transformer, motors, generators, and any other electrical variable that interacts with another magnetic field is mutual inductance. The current flowing in one coil generates a voltage in an adjacent coil, which is known as mutual induction.
$L = \dfrac{{\phi (i)}}{i}$
$L = $Inductance, $\phi (i) = $Magnetic flux of current $i$ and $i = $Current.
Now let us come to the bit (a) of the question:
Using,
${E_1} = M\dfrac{{d{i_2}}}{{dt}}$...........................[$Equation - 1$]
Where, ${E_1} = $emf in the 1st coil, $M = $Mutual inductance and $\dfrac{{d{i_2}}}{{dt}} = $rate of current increase in coil 2.
(b) Given, ${E_1} = 25mV = \dfrac{{25}}{{1000}}V = 0.025\,V$
$\dfrac{{d{i_2}}}{{dt}} = 15\,A/s$
Substitute the above values into the $Equation - 1$
$0.025 = 15M \\
\Rightarrow M = \dfrac{{0.025}}{{15}} \\
\Rightarrow M = 1.66 \times {10^{ - 3}}H \\$
Therefore the Mutual Inductance is $M = 1.66 \times {10^{ - 3}}\,H$
Now, let us solve the bit (b) of the problem: as we know,
$|M| = \dfrac{{e_1}\,dt}{di_2}= \dfrac{{{\phi _2}}}{{{i_1}}}$
$\Rightarrow {\phi _2} =\dfrac{{e_1}\,dt\,{i_1}}{di_2} \\
\Rightarrow {\phi _2} = \dfrac{{(25.0 \times {{10}^{ - 3}})(3.60)}}{{15}} \\
\Rightarrow {\phi _2} = 6 \times {10^{ - 3}} \\
\therefore {\phi _2} = 6\,mWb$
Hence, the flux linkage in coil $2$ is $6\,mWb$.
Note:Negative electromotive force is possible. Consider the case of an inductor that generates an EMF that is in opposition to the incoming force. The generated EMF is then interpreted as negative because the flow direction is opposite that of the real force. As a result, the electromotive force is possible to be negative.
Complete step by step answer:
(a) Let us understand mutual inductance. This is the inductance set up between two coils with a connection between their fluxes. Henry is the SI unit of mutual inductance. The basic operating principle of the transformer, motors, generators, and any other electrical variable that interacts with another magnetic field is mutual inductance. The current flowing in one coil generates a voltage in an adjacent coil, which is known as mutual induction.
$L = \dfrac{{\phi (i)}}{i}$
$L = $Inductance, $\phi (i) = $Magnetic flux of current $i$ and $i = $Current.
Now let us come to the bit (a) of the question:
Using,
${E_1} = M\dfrac{{d{i_2}}}{{dt}}$...........................[$Equation - 1$]
Where, ${E_1} = $emf in the 1st coil, $M = $Mutual inductance and $\dfrac{{d{i_2}}}{{dt}} = $rate of current increase in coil 2.
(b) Given, ${E_1} = 25mV = \dfrac{{25}}{{1000}}V = 0.025\,V$
$\dfrac{{d{i_2}}}{{dt}} = 15\,A/s$
Substitute the above values into the $Equation - 1$
$0.025 = 15M \\
\Rightarrow M = \dfrac{{0.025}}{{15}} \\
\Rightarrow M = 1.66 \times {10^{ - 3}}H \\$
Therefore the Mutual Inductance is $M = 1.66 \times {10^{ - 3}}\,H$
Now, let us solve the bit (b) of the problem: as we know,
$|M| = \dfrac{{e_1}\,dt}{di_2}= \dfrac{{{\phi _2}}}{{{i_1}}}$
$\Rightarrow {\phi _2} =\dfrac{{e_1}\,dt\,{i_1}}{di_2} \\
\Rightarrow {\phi _2} = \dfrac{{(25.0 \times {{10}^{ - 3}})(3.60)}}{{15}} \\
\Rightarrow {\phi _2} = 6 \times {10^{ - 3}} \\
\therefore {\phi _2} = 6\,mWb$
Hence, the flux linkage in coil $2$ is $6\,mWb$.
Note:Negative electromotive force is possible. Consider the case of an inductor that generates an EMF that is in opposition to the incoming force. The generated EMF is then interpreted as negative because the flow direction is opposite that of the real force. As a result, the electromotive force is possible to be negative.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

