Answer
Verified
455.1k+ views
Hint: In this question, use the relationship between the capacitance, charge and potential of a capacitor that is $Q = CV$. Use the constraints given in the question to find the charge onto the two capacitors. Then use the fact that since the potential is found to be zero therefore the capacitors must be connected in phase opposition that is \[\mathop Q\nolimits_1 - \mathop Q\nolimits_2 = 0\]. This will help to get the right answer to this problem.
Complete answer:
As we know the charge stored by the capacitor is the product of individual capacitance and the voltage stored in the capacitor.
$ \Rightarrow Q = CV$……. (1)
Where Q= charge, C= capacitance, V= voltage
Now, let the capacitance of the first capacitor be $\mathop C\nolimits_1 $and the capacitance of the second capacitor be $\mathop C\nolimits_2 $
The charged voltage of the first and second capacitor are 120V and 200V.
So, the charges on the first and capacitors are
$\mathop Q\nolimits_1 = 120\mathop C\nolimits_1 $coulomb
AND
$\mathop Q\nolimits_2 = 200\mathop C\nolimits_2 $coulomb
Now it is given that they are connected in parallel and it is found that the potential on each of them is zero so from equation (1) if the potential or voltage on each of them is zero then the charge on each of them is zero.
It is only possible when they are connected in phase opposition such that \[\mathop Q\nolimits_1 - \mathop Q\nolimits_2 = 0\]
Now, substitute the value in above equation we have,
\[\mathop Q\nolimits_1 - \mathop Q\nolimits_2 = 0\]
$ \Rightarrow 120\mathop C\nolimits_1 - 200\mathop C\nolimits_2 = 0$
Now, simplify this we have
$ \Rightarrow 120\mathop C\nolimits_1 = 200\mathop C\nolimits_2 $
Divide by 40 throughout we have,
$3\mathop C\nolimits_1 = 5\mathop C\nolimits_2 $
$\therefore$ The required relation between $\mathop C\nolimits_1 $ and $\mathop C\nolimits_2 $ i.e first and second capacitor. Hence, option (A) is the correct answer.
Note:
The parallel combinatory of the capacitors is exactly equivalent to that series connection of the resistors$\mathop C\nolimits_{eq} = \mathop C\nolimits_1 + \mathop C\nolimits_2 $. It is advised to remember the direct relationship that is q=cv. A parallel plate capacitor is formed by charging parallel plates which may have dielectric or air-filled in between the plates. these plates are separated by some distance d and if A is the area of cross-section of the plates then capacitance $C$ is given by $C=\dfrac{{\epsilon}_o A}{d}$
Complete answer:
As we know the charge stored by the capacitor is the product of individual capacitance and the voltage stored in the capacitor.
$ \Rightarrow Q = CV$……. (1)
Where Q= charge, C= capacitance, V= voltage
Now, let the capacitance of the first capacitor be $\mathop C\nolimits_1 $and the capacitance of the second capacitor be $\mathop C\nolimits_2 $
The charged voltage of the first and second capacitor are 120V and 200V.
So, the charges on the first and capacitors are
$\mathop Q\nolimits_1 = 120\mathop C\nolimits_1 $coulomb
AND
$\mathop Q\nolimits_2 = 200\mathop C\nolimits_2 $coulomb
Now it is given that they are connected in parallel and it is found that the potential on each of them is zero so from equation (1) if the potential or voltage on each of them is zero then the charge on each of them is zero.
It is only possible when they are connected in phase opposition such that \[\mathop Q\nolimits_1 - \mathop Q\nolimits_2 = 0\]
Now, substitute the value in above equation we have,
\[\mathop Q\nolimits_1 - \mathop Q\nolimits_2 = 0\]
$ \Rightarrow 120\mathop C\nolimits_1 - 200\mathop C\nolimits_2 = 0$
Now, simplify this we have
$ \Rightarrow 120\mathop C\nolimits_1 = 200\mathop C\nolimits_2 $
Divide by 40 throughout we have,
$3\mathop C\nolimits_1 = 5\mathop C\nolimits_2 $
$\therefore$ The required relation between $\mathop C\nolimits_1 $ and $\mathop C\nolimits_2 $ i.e first and second capacitor. Hence, option (A) is the correct answer.
Note:
The parallel combinatory of the capacitors is exactly equivalent to that series connection of the resistors$\mathop C\nolimits_{eq} = \mathop C\nolimits_1 + \mathop C\nolimits_2 $. It is advised to remember the direct relationship that is q=cv. A parallel plate capacitor is formed by charging parallel plates which may have dielectric or air-filled in between the plates. these plates are separated by some distance d and if A is the area of cross-section of the plates then capacitance $C$ is given by $C=\dfrac{{\epsilon}_o A}{d}$
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The largest tea producing country in the world is A class 10 social science CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE