Answer
Verified
426.9k+ views
Hint: For a reversible reaction shown by the general reaction,
$\text{ aA + bB }\rightleftharpoons \text{ cC + dD }$
The Nernst equation is written in terms of the equilibrium constant is written below,
$\text{ }{{\text{E}}_{\text{cell}}}\text{= }\dfrac{\text{RT}}{\text{nF}}\text{ln}\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$
Where $\text{ K = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$ and K is an equilibrium constant for a reaction, R is gas constant, T is absolute temperature, n is the number of electrons in redox reaction and F is faraday's constant.
Complete step by step solution:
The nearest equation can be written in terms of equilibrium constant .It is given as follows,
$\text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ln K }$ (1)
Where $\text{ E}_{\text{cell}}^{\text{0}}\text{ }$ is a cell constant, R is gas constant, T is absolute temperature, n is the number of electrons involved in a redox reaction, F is faraday's constant and k is the equilibrium constant of the reaction.
We have given that silver from silver nitrate undergoes a reduction reaction. The reduction potential for the reaction is,
$\text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag E}_{\text{red}}^{\text{0}}=0.8\text{ V }$
Similarly, glucose (aldehyde) forms gluconic acid. the reduction potential for the oxidation reaction of glucose to gluconic acid is as shown below,
$\text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V }$
Thus cell potential $\text{ E}_{\text{Cell}}^{\text{0}}\text{ }$ is the difference in reduction potential of reduction reaction and oxidation reaction. Thus standard electrode potential is determined as,
$\text{ E}_{\text{Cell}}^{\text{0}}\text{ }=\text{ }{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Red}}}+{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Ox}}}\text{ = 0}\text{.8 }-0.05\text{ = 0}\text{.75 V }$
Therefore electrode standard potential is equal to $\text{ 0}\text{.75 V }$ .
Substitute values in the equation (1) we have,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{nF}}\text{ln K = 2}\text{.302 }\dfrac{\text{RT}}{\text{nF}}\text{log K }$ (2)
We are requested to use $\text{ 2}\text{.302 }\!\!\times\!\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 }$ and $\text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 }$ . Let's substitute all value given in the equation (2) we get the following relation,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{2}\times \text{F}}\text{ ln K = }\dfrac{1}{2}\times \dfrac{0.0592}{2.303}\ln \text{ K }$
Rearrange above equation with respect to the natural logarithmic value of equilibrium constant K is given as,
$\text{ ln K = }\dfrac{\left( 0.75 \right)\left( 2\times 2.303 \right)}{0.0592}\text{ = 58}\text{.38 }$
Thus the correct answer of the ln K value is $\text{ 58}\text{.38 }$ .
Hence, (B) is the correct option.
Note: Note that, for electrochemical reaction value of equilibrium constant K is very large.it indicates that electrochemical reactions are more favoured towards the product. Remember that the negative value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$ means that the cell under study is not feasible or not possible. Thus the value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$is used to determine whether the cell is spontaneous or not.
$\text{ aA + bB }\rightleftharpoons \text{ cC + dD }$
The Nernst equation is written in terms of the equilibrium constant is written below,
$\text{ }{{\text{E}}_{\text{cell}}}\text{= }\dfrac{\text{RT}}{\text{nF}}\text{ln}\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$
Where $\text{ K = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$ and K is an equilibrium constant for a reaction, R is gas constant, T is absolute temperature, n is the number of electrons in redox reaction and F is faraday's constant.
Complete step by step solution:
The nearest equation can be written in terms of equilibrium constant .It is given as follows,
$\text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ln K }$ (1)
Where $\text{ E}_{\text{cell}}^{\text{0}}\text{ }$ is a cell constant, R is gas constant, T is absolute temperature, n is the number of electrons involved in a redox reaction, F is faraday's constant and k is the equilibrium constant of the reaction.
We have given that silver from silver nitrate undergoes a reduction reaction. The reduction potential for the reaction is,
$\text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag E}_{\text{red}}^{\text{0}}=0.8\text{ V }$
Similarly, glucose (aldehyde) forms gluconic acid. the reduction potential for the oxidation reaction of glucose to gluconic acid is as shown below,
$\text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V }$
Thus cell potential $\text{ E}_{\text{Cell}}^{\text{0}}\text{ }$ is the difference in reduction potential of reduction reaction and oxidation reaction. Thus standard electrode potential is determined as,
$\text{ E}_{\text{Cell}}^{\text{0}}\text{ }=\text{ }{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Red}}}+{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Ox}}}\text{ = 0}\text{.8 }-0.05\text{ = 0}\text{.75 V }$
Therefore electrode standard potential is equal to $\text{ 0}\text{.75 V }$ .
Substitute values in the equation (1) we have,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{nF}}\text{ln K = 2}\text{.302 }\dfrac{\text{RT}}{\text{nF}}\text{log K }$ (2)
We are requested to use $\text{ 2}\text{.302 }\!\!\times\!\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 }$ and $\text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 }$ . Let's substitute all value given in the equation (2) we get the following relation,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{2}\times \text{F}}\text{ ln K = }\dfrac{1}{2}\times \dfrac{0.0592}{2.303}\ln \text{ K }$
Rearrange above equation with respect to the natural logarithmic value of equilibrium constant K is given as,
$\text{ ln K = }\dfrac{\left( 0.75 \right)\left( 2\times 2.303 \right)}{0.0592}\text{ = 58}\text{.38 }$
Thus the correct answer of the ln K value is $\text{ 58}\text{.38 }$ .
Hence, (B) is the correct option.
Note: Note that, for electrochemical reaction value of equilibrium constant K is very large.it indicates that electrochemical reactions are more favoured towards the product. Remember that the negative value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$ means that the cell under study is not feasible or not possible. Thus the value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$is used to determine whether the cell is spontaneous or not.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE