
Tollens’s reagent is used for the detection of aldehyde when a solution of $\text{ AgN}{{\text{O}}_{\text{3}}}\text{ }$ added to glucose with $\text{ N}{{\text{H}}_{\text{4}}}\text{OH }$ the gluconic acid is formed
$\begin{align}
& \text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag ; E}_{\text{red}}^{\text{0}}=0.8\text{ V } \\
& {{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V } \\
& \text{Ag(N}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag(s) + 2N}{{\text{H}}_{\text{3}}}\text{ } \\
\end{align}$
(Use $\text{ 2}\text{.302 }\!\!\times\!\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 }$ and $\text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 }$ at $\text{ 298 K }$ )
$\text{ 2A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ 2Ag(s) + }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{ + 2}{{\text{H}}^{\text{+}}}\text{ }$
Find$\text{ ln K }$ of this reaction?
Answer
554.7k+ views
Hint: For a reversible reaction shown by the general reaction,
$\text{ aA + bB }\rightleftharpoons \text{ cC + dD }$
The Nernst equation is written in terms of the equilibrium constant is written below,
$\text{ }{{\text{E}}_{\text{cell}}}\text{= }\dfrac{\text{RT}}{\text{nF}}\text{ln}\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$
Where $\text{ K = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$ and K is an equilibrium constant for a reaction, R is gas constant, T is absolute temperature, n is the number of electrons in redox reaction and F is faraday's constant.
Complete step by step solution:
The nearest equation can be written in terms of equilibrium constant .It is given as follows,
$\text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ln K }$ (1)
Where $\text{ E}_{\text{cell}}^{\text{0}}\text{ }$ is a cell constant, R is gas constant, T is absolute temperature, n is the number of electrons involved in a redox reaction, F is faraday's constant and k is the equilibrium constant of the reaction.
We have given that silver from silver nitrate undergoes a reduction reaction. The reduction potential for the reaction is,
$\text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag E}_{\text{red}}^{\text{0}}=0.8\text{ V }$
Similarly, glucose (aldehyde) forms gluconic acid. the reduction potential for the oxidation reaction of glucose to gluconic acid is as shown below,
$\text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V }$
Thus cell potential $\text{ E}_{\text{Cell}}^{\text{0}}\text{ }$ is the difference in reduction potential of reduction reaction and oxidation reaction. Thus standard electrode potential is determined as,
$\text{ E}_{\text{Cell}}^{\text{0}}\text{ }=\text{ }{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Red}}}+{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Ox}}}\text{ = 0}\text{.8 }-0.05\text{ = 0}\text{.75 V }$
Therefore electrode standard potential is equal to $\text{ 0}\text{.75 V }$ .
Substitute values in the equation (1) we have,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{nF}}\text{ln K = 2}\text{.302 }\dfrac{\text{RT}}{\text{nF}}\text{log K }$ (2)
We are requested to use $\text{ 2}\text{.302 }\!\!\times\!\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 }$ and $\text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 }$ . Let's substitute all value given in the equation (2) we get the following relation,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{2}\times \text{F}}\text{ ln K = }\dfrac{1}{2}\times \dfrac{0.0592}{2.303}\ln \text{ K }$
Rearrange above equation with respect to the natural logarithmic value of equilibrium constant K is given as,
$\text{ ln K = }\dfrac{\left( 0.75 \right)\left( 2\times 2.303 \right)}{0.0592}\text{ = 58}\text{.38 }$
Thus the correct answer of the ln K value is $\text{ 58}\text{.38 }$ .
Hence, (B) is the correct option.
Note: Note that, for electrochemical reaction value of equilibrium constant K is very large.it indicates that electrochemical reactions are more favoured towards the product. Remember that the negative value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$ means that the cell under study is not feasible or not possible. Thus the value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$is used to determine whether the cell is spontaneous or not.
$\text{ aA + bB }\rightleftharpoons \text{ cC + dD }$
The Nernst equation is written in terms of the equilibrium constant is written below,
$\text{ }{{\text{E}}_{\text{cell}}}\text{= }\dfrac{\text{RT}}{\text{nF}}\text{ln}\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$
Where $\text{ K = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$ and K is an equilibrium constant for a reaction, R is gas constant, T is absolute temperature, n is the number of electrons in redox reaction and F is faraday's constant.
Complete step by step solution:
The nearest equation can be written in terms of equilibrium constant .It is given as follows,
$\text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ln K }$ (1)
Where $\text{ E}_{\text{cell}}^{\text{0}}\text{ }$ is a cell constant, R is gas constant, T is absolute temperature, n is the number of electrons involved in a redox reaction, F is faraday's constant and k is the equilibrium constant of the reaction.
We have given that silver from silver nitrate undergoes a reduction reaction. The reduction potential for the reaction is,
$\text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag E}_{\text{red}}^{\text{0}}=0.8\text{ V }$
Similarly, glucose (aldehyde) forms gluconic acid. the reduction potential for the oxidation reaction of glucose to gluconic acid is as shown below,
$\text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V }$
Thus cell potential $\text{ E}_{\text{Cell}}^{\text{0}}\text{ }$ is the difference in reduction potential of reduction reaction and oxidation reaction. Thus standard electrode potential is determined as,
$\text{ E}_{\text{Cell}}^{\text{0}}\text{ }=\text{ }{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Red}}}+{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Ox}}}\text{ = 0}\text{.8 }-0.05\text{ = 0}\text{.75 V }$
Therefore electrode standard potential is equal to $\text{ 0}\text{.75 V }$ .
Substitute values in the equation (1) we have,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{nF}}\text{ln K = 2}\text{.302 }\dfrac{\text{RT}}{\text{nF}}\text{log K }$ (2)
We are requested to use $\text{ 2}\text{.302 }\!\!\times\!\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 }$ and $\text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 }$ . Let's substitute all value given in the equation (2) we get the following relation,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{2}\times \text{F}}\text{ ln K = }\dfrac{1}{2}\times \dfrac{0.0592}{2.303}\ln \text{ K }$
Rearrange above equation with respect to the natural logarithmic value of equilibrium constant K is given as,
$\text{ ln K = }\dfrac{\left( 0.75 \right)\left( 2\times 2.303 \right)}{0.0592}\text{ = 58}\text{.38 }$
Thus the correct answer of the ln K value is $\text{ 58}\text{.38 }$ .
Hence, (B) is the correct option.
Note: Note that, for electrochemical reaction value of equilibrium constant K is very large.it indicates that electrochemical reactions are more favoured towards the product. Remember that the negative value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$ means that the cell under study is not feasible or not possible. Thus the value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$is used to determine whether the cell is spontaneous or not.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Plot a graph between potential difference V and current class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

How will you obtain OR AND gates from the NAND and class 12 physics CBSE

The good milk producer Indian buffaloes are A Nagpuri class 12 biology CBSE

