
Tollens’s reagent is used for the detection of aldehyde when a solution of $\text{ AgN}{{\text{O}}_{\text{3}}}\text{ }$ added to glucose with $\text{ N}{{\text{H}}_{\text{4}}}\text{OH }$ the gluconic acid is formed
$\begin{align}
& \text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag ; E}_{\text{red}}^{\text{0}}=0.8\text{ V } \\
& {{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V } \\
& \text{Ag(N}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag(s) + 2N}{{\text{H}}_{\text{3}}}\text{ } \\
\end{align}$
(Use $\text{ 2}\text{.302 }\!\!\times\!\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 }$ and $\text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 }$ at $\text{ 298 K }$ )
$\text{ 2A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ 2Ag(s) + }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{ + 2}{{\text{H}}^{\text{+}}}\text{ }$
Find$\text{ ln K }$ of this reaction?
Answer
573.6k+ views
Hint: For a reversible reaction shown by the general reaction,
$\text{ aA + bB }\rightleftharpoons \text{ cC + dD }$
The Nernst equation is written in terms of the equilibrium constant is written below,
$\text{ }{{\text{E}}_{\text{cell}}}\text{= }\dfrac{\text{RT}}{\text{nF}}\text{ln}\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$
Where $\text{ K = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$ and K is an equilibrium constant for a reaction, R is gas constant, T is absolute temperature, n is the number of electrons in redox reaction and F is faraday's constant.
Complete step by step solution:
The nearest equation can be written in terms of equilibrium constant .It is given as follows,
$\text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ln K }$ (1)
Where $\text{ E}_{\text{cell}}^{\text{0}}\text{ }$ is a cell constant, R is gas constant, T is absolute temperature, n is the number of electrons involved in a redox reaction, F is faraday's constant and k is the equilibrium constant of the reaction.
We have given that silver from silver nitrate undergoes a reduction reaction. The reduction potential for the reaction is,
$\text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag E}_{\text{red}}^{\text{0}}=0.8\text{ V }$
Similarly, glucose (aldehyde) forms gluconic acid. the reduction potential for the oxidation reaction of glucose to gluconic acid is as shown below,
$\text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V }$
Thus cell potential $\text{ E}_{\text{Cell}}^{\text{0}}\text{ }$ is the difference in reduction potential of reduction reaction and oxidation reaction. Thus standard electrode potential is determined as,
$\text{ E}_{\text{Cell}}^{\text{0}}\text{ }=\text{ }{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Red}}}+{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Ox}}}\text{ = 0}\text{.8 }-0.05\text{ = 0}\text{.75 V }$
Therefore electrode standard potential is equal to $\text{ 0}\text{.75 V }$ .
Substitute values in the equation (1) we have,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{nF}}\text{ln K = 2}\text{.302 }\dfrac{\text{RT}}{\text{nF}}\text{log K }$ (2)
We are requested to use $\text{ 2}\text{.302 }\!\!\times\!\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 }$ and $\text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 }$ . Let's substitute all value given in the equation (2) we get the following relation,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{2}\times \text{F}}\text{ ln K = }\dfrac{1}{2}\times \dfrac{0.0592}{2.303}\ln \text{ K }$
Rearrange above equation with respect to the natural logarithmic value of equilibrium constant K is given as,
$\text{ ln K = }\dfrac{\left( 0.75 \right)\left( 2\times 2.303 \right)}{0.0592}\text{ = 58}\text{.38 }$
Thus the correct answer of the ln K value is $\text{ 58}\text{.38 }$ .
Hence, (B) is the correct option.
Note: Note that, for electrochemical reaction value of equilibrium constant K is very large.it indicates that electrochemical reactions are more favoured towards the product. Remember that the negative value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$ means that the cell under study is not feasible or not possible. Thus the value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$is used to determine whether the cell is spontaneous or not.
$\text{ aA + bB }\rightleftharpoons \text{ cC + dD }$
The Nernst equation is written in terms of the equilibrium constant is written below,
$\text{ }{{\text{E}}_{\text{cell}}}\text{= }\dfrac{\text{RT}}{\text{nF}}\text{ln}\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$
Where $\text{ K = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$ and K is an equilibrium constant for a reaction, R is gas constant, T is absolute temperature, n is the number of electrons in redox reaction and F is faraday's constant.
Complete step by step solution:
The nearest equation can be written in terms of equilibrium constant .It is given as follows,
$\text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ln K }$ (1)
Where $\text{ E}_{\text{cell}}^{\text{0}}\text{ }$ is a cell constant, R is gas constant, T is absolute temperature, n is the number of electrons involved in a redox reaction, F is faraday's constant and k is the equilibrium constant of the reaction.
We have given that silver from silver nitrate undergoes a reduction reaction. The reduction potential for the reaction is,
$\text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag E}_{\text{red}}^{\text{0}}=0.8\text{ V }$
Similarly, glucose (aldehyde) forms gluconic acid. the reduction potential for the oxidation reaction of glucose to gluconic acid is as shown below,
$\text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V }$
Thus cell potential $\text{ E}_{\text{Cell}}^{\text{0}}\text{ }$ is the difference in reduction potential of reduction reaction and oxidation reaction. Thus standard electrode potential is determined as,
$\text{ E}_{\text{Cell}}^{\text{0}}\text{ }=\text{ }{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Red}}}+{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Ox}}}\text{ = 0}\text{.8 }-0.05\text{ = 0}\text{.75 V }$
Therefore electrode standard potential is equal to $\text{ 0}\text{.75 V }$ .
Substitute values in the equation (1) we have,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{nF}}\text{ln K = 2}\text{.302 }\dfrac{\text{RT}}{\text{nF}}\text{log K }$ (2)
We are requested to use $\text{ 2}\text{.302 }\!\!\times\!\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 }$ and $\text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 }$ . Let's substitute all value given in the equation (2) we get the following relation,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{2}\times \text{F}}\text{ ln K = }\dfrac{1}{2}\times \dfrac{0.0592}{2.303}\ln \text{ K }$
Rearrange above equation with respect to the natural logarithmic value of equilibrium constant K is given as,
$\text{ ln K = }\dfrac{\left( 0.75 \right)\left( 2\times 2.303 \right)}{0.0592}\text{ = 58}\text{.38 }$
Thus the correct answer of the ln K value is $\text{ 58}\text{.38 }$ .
Hence, (B) is the correct option.
Note: Note that, for electrochemical reaction value of equilibrium constant K is very large.it indicates that electrochemical reactions are more favoured towards the product. Remember that the negative value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$ means that the cell under study is not feasible or not possible. Thus the value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$is used to determine whether the cell is spontaneous or not.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

