
How many three-digit numbers can be formed from the digits 2, 3, 5, 6, 7 and 9 which are divisible by 5 and none of the numbers repeated.
Answer
216.6k+ views
Hint: To solve the question, we have to apply the divisibility rule of 5 and the formula for selecting the numbers from 2, 3, 5, 6, 7 and 9 to from a third-digit number.
Complete step-by-step answer:
Let the three-digit number be xyz.
The divisibility rule of 5 is the number should have 0 or 5 at the unit’s place.
The value of z can be either 0 or 5.
The given numbers are 2, 3, 5, 6, 7 and 9. Since there is no 0 in the list of given numbers, the value of z is 5.
The values of x, y can be from the set of 2, 3, 6, 7 and 9. Since the numbers are not repeated.
If the value of x is 2 then the value of y can be either of the numbers 3, 6, 7, 9. The case is the same if the value of x is the numbers 3, 6, 7, 9.
Thus, the number of possible ways of selecting x, y values \[={}^{5}{{C}_{1}}\times {}^{4}{{C}_{1}}\]
Where \[{}^{5}{{C}_{1}}\] represent the way of selecting one number from the given 5 numbers 2, 3, 6, 7 and 9. \[{}^{4}{{C}_{1}}\] represent the way of selecting one number from the numbers left out after the value of x is chosen.
We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] and \[n!=n\left( n-1 \right)\left( n-2 \right).....2\times 1\]
Thus, the values of \[{}^{5}{{C}_{1}}\times {}^{4}{{C}_{1}}=\dfrac{5!}{1!\left( 5-1 \right)!}\times \dfrac{4!}{1!\left( 4-1 \right)!}\]
\[=\dfrac{5\times 4\times 3\times 2\times 1}{1\left( 4 \right)!}\times \dfrac{4\times 3\times 2\times 1}{1\left( 3 \right)!}\]
\[=\dfrac{5\times 4\times 3\times 2\times 1}{4\times 3\times 2\times 1}\times \dfrac{4\times 3\times 2\times 1}{3\times 2\times 1}\]
\[=5\times 4=20\]
Thus, the number of ways of forming three-digit numbers = 20(way of selecting number 5 for the value of z)
\[=20\times 1=20\]
\[\therefore \]The number of ways three-digit numbers can be formed from the digits 2, 3, 5, 6, 7 and 9 which are divisible by 5 while being no number be repeated = 20
Note: The possibility of mistake can be the calculation since the procedure of solving requires combinations and factorial calculations. The alternative quick can be applying the direct formula of selecting numbers for the three-digit number while keeping the divisibility rule of 5 and condition of numbers being not repeated. This method will lead to the value of answer =\[{}^{5}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{1}{{C}_{1}}\]
Complete step-by-step answer:
Let the three-digit number be xyz.
The divisibility rule of 5 is the number should have 0 or 5 at the unit’s place.
The value of z can be either 0 or 5.
The given numbers are 2, 3, 5, 6, 7 and 9. Since there is no 0 in the list of given numbers, the value of z is 5.
The values of x, y can be from the set of 2, 3, 6, 7 and 9. Since the numbers are not repeated.
If the value of x is 2 then the value of y can be either of the numbers 3, 6, 7, 9. The case is the same if the value of x is the numbers 3, 6, 7, 9.
Thus, the number of possible ways of selecting x, y values \[={}^{5}{{C}_{1}}\times {}^{4}{{C}_{1}}\]
Where \[{}^{5}{{C}_{1}}\] represent the way of selecting one number from the given 5 numbers 2, 3, 6, 7 and 9. \[{}^{4}{{C}_{1}}\] represent the way of selecting one number from the numbers left out after the value of x is chosen.
We know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] and \[n!=n\left( n-1 \right)\left( n-2 \right).....2\times 1\]
Thus, the values of \[{}^{5}{{C}_{1}}\times {}^{4}{{C}_{1}}=\dfrac{5!}{1!\left( 5-1 \right)!}\times \dfrac{4!}{1!\left( 4-1 \right)!}\]
\[=\dfrac{5\times 4\times 3\times 2\times 1}{1\left( 4 \right)!}\times \dfrac{4\times 3\times 2\times 1}{1\left( 3 \right)!}\]
\[=\dfrac{5\times 4\times 3\times 2\times 1}{4\times 3\times 2\times 1}\times \dfrac{4\times 3\times 2\times 1}{3\times 2\times 1}\]
\[=5\times 4=20\]
Thus, the number of ways of forming three-digit numbers = 20(way of selecting number 5 for the value of z)
\[=20\times 1=20\]
\[\therefore \]The number of ways three-digit numbers can be formed from the digits 2, 3, 5, 6, 7 and 9 which are divisible by 5 while being no number be repeated = 20
Note: The possibility of mistake can be the calculation since the procedure of solving requires combinations and factorial calculations. The alternative quick can be applying the direct formula of selecting numbers for the three-digit number while keeping the divisibility rule of 5 and condition of numbers being not repeated. This method will lead to the value of answer =\[{}^{5}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{1}{{C}_{1}}\]
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

