Answer
Verified
429.3k+ views
Hint: We will make use of the formula for calculating the resistors connected in parallel to find the value of the minimum resistance and the formula for calculating the resistors connected in series to find the value of the maximum resistance. Then, we will find the average and the ratio of these values.
Formula used:
\[\dfrac{1}{{{R}_{P}}}=\dfrac{1}{{{R}_{1}}}+\dfrac{1}{{{R}_{2}}}+\dfrac{1}{{{R}_{3}}}+......+\dfrac{1}{{{R}_{n}}}\]
\[{{R}_{S}}={{R}_{1}}+{{R}_{2}}+{{R}_{3}}+......+{{R}_{n}}\]
Complete answer:
The formula used to find the resistance of the resistors connected in parallel is as follows.
\[\dfrac{1}{{{R}_{P}}}=\dfrac{1}{{{R}_{1}}}+\dfrac{1}{{{R}_{2}}}+\dfrac{1}{{{R}_{3}}}+......+\dfrac{1}{{{R}_{n}}}\]
Similarly, the formula used to find the resistance of the resistors connected in series is as follows.
\[{{R}_{S}}={{R}_{1}}+{{R}_{2}}+{{R}_{3}}+......+{{R}_{n}}\]
From given, we have the values of the resistors to be equal to\[(2\Omega ,4\Omega ,4\Omega )\].
As we are given with the resistance values of the 3 resistors, firstly, we will derive the formula for the equivalent resistance of the 3 resistors connected in parallel.
So, we have,
\[\dfrac{1}{{{R}_{P}}}=\dfrac{1}{{{R}_{1}}}+\dfrac{1}{{{R}_{2}}}+\dfrac{1}{{{R}_{3}}}\]
Now, substitute the values of the resistance of the 3 resistors given in the above equation.
\[\begin{align}
& \dfrac{1}{{{R}_{P}}}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4} \\
& \Rightarrow \dfrac{1}{{{R}_{P}}}=\dfrac{1}{2}+\dfrac{1}{2} \\
\end{align}\]
Continue the further calculation.
\[\begin{align}
& \dfrac{1}{{{R}_{P}}}=1 \\
& \Rightarrow {{R}_{P}}=1 \\
\end{align}\]
Therefore, the value of the minimum resistance is\[1\,\Omega \].
As we are given with the resistance values of the 3 resistors, firstly, we will derive the formula for the equivalent resistance of the 3 resistors connected in series.
So, we have,
\[{{R}_{S}}={{R}_{1}}+{{R}_{2}}+{{R}_{3}}\]
Now, substitute the values of the resistance of the 3 resistors given in the above equation.
\[\begin{align}
& {{R}_{S}}=2+4+4 \\
& \Rightarrow {{R}_{S}}=10 \\
\end{align}\]
Therefore, the value of the maximum resistance is\[1\,0\,\Omega \].
The average value of the minimum resistance \[1\,\Omega \] and the maximum resistance \[1\,0\,\Omega \] is calculated as follows.
\[\begin{align}
& \text{Avg}=\dfrac{{{R}_{\max }}+{{R}_{\min }}}{2} \\
& \Rightarrow \text{Avg}=\dfrac{10+1}{2} \\
\end{align}\]
Upon further continuing the calculation, we get,
\[\text{Avg}=5.5\]
Therefore, the average value of the maximum and minimum resistance is 5.5 or \[\dfrac{22}{4}\].
The ratio of the minimum resistance \[1\,\Omega \]and the maximum resistance \[1\,0\,\Omega \] is calculated as follows.
\[\begin{align}
& R=\dfrac{{{R}_{\max }}}{{{R}_{\min }}} \\
& \Rightarrow R=\dfrac{10}{1} \\
\end{align}\]
Therefore, the ratio of the maximum and minimum resistance is 10:1.
As the values the average and ratio of \[{{R}_{\max }}\] and \[{{R}_{\min }}\] are \[\dfrac{22}{4},10:1\].
So, the correct answer is “Option C”.
Note:
The average of the values of the maximum and minimum resistance can be found by first adding the maximum and minimum values and then dividing this value by 2. The ratio of the values of the maximum and minimum resistance can be found by dividing the values of the maximum and minimum resistance.
Formula used:
\[\dfrac{1}{{{R}_{P}}}=\dfrac{1}{{{R}_{1}}}+\dfrac{1}{{{R}_{2}}}+\dfrac{1}{{{R}_{3}}}+......+\dfrac{1}{{{R}_{n}}}\]
\[{{R}_{S}}={{R}_{1}}+{{R}_{2}}+{{R}_{3}}+......+{{R}_{n}}\]
Complete answer:
The formula used to find the resistance of the resistors connected in parallel is as follows.
\[\dfrac{1}{{{R}_{P}}}=\dfrac{1}{{{R}_{1}}}+\dfrac{1}{{{R}_{2}}}+\dfrac{1}{{{R}_{3}}}+......+\dfrac{1}{{{R}_{n}}}\]
Similarly, the formula used to find the resistance of the resistors connected in series is as follows.
\[{{R}_{S}}={{R}_{1}}+{{R}_{2}}+{{R}_{3}}+......+{{R}_{n}}\]
From given, we have the values of the resistors to be equal to\[(2\Omega ,4\Omega ,4\Omega )\].
As we are given with the resistance values of the 3 resistors, firstly, we will derive the formula for the equivalent resistance of the 3 resistors connected in parallel.
So, we have,
\[\dfrac{1}{{{R}_{P}}}=\dfrac{1}{{{R}_{1}}}+\dfrac{1}{{{R}_{2}}}+\dfrac{1}{{{R}_{3}}}\]
Now, substitute the values of the resistance of the 3 resistors given in the above equation.
\[\begin{align}
& \dfrac{1}{{{R}_{P}}}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4} \\
& \Rightarrow \dfrac{1}{{{R}_{P}}}=\dfrac{1}{2}+\dfrac{1}{2} \\
\end{align}\]
Continue the further calculation.
\[\begin{align}
& \dfrac{1}{{{R}_{P}}}=1 \\
& \Rightarrow {{R}_{P}}=1 \\
\end{align}\]
Therefore, the value of the minimum resistance is\[1\,\Omega \].
As we are given with the resistance values of the 3 resistors, firstly, we will derive the formula for the equivalent resistance of the 3 resistors connected in series.
So, we have,
\[{{R}_{S}}={{R}_{1}}+{{R}_{2}}+{{R}_{3}}\]
Now, substitute the values of the resistance of the 3 resistors given in the above equation.
\[\begin{align}
& {{R}_{S}}=2+4+4 \\
& \Rightarrow {{R}_{S}}=10 \\
\end{align}\]
Therefore, the value of the maximum resistance is\[1\,0\,\Omega \].
The average value of the minimum resistance \[1\,\Omega \] and the maximum resistance \[1\,0\,\Omega \] is calculated as follows.
\[\begin{align}
& \text{Avg}=\dfrac{{{R}_{\max }}+{{R}_{\min }}}{2} \\
& \Rightarrow \text{Avg}=\dfrac{10+1}{2} \\
\end{align}\]
Upon further continuing the calculation, we get,
\[\text{Avg}=5.5\]
Therefore, the average value of the maximum and minimum resistance is 5.5 or \[\dfrac{22}{4}\].
The ratio of the minimum resistance \[1\,\Omega \]and the maximum resistance \[1\,0\,\Omega \] is calculated as follows.
\[\begin{align}
& R=\dfrac{{{R}_{\max }}}{{{R}_{\min }}} \\
& \Rightarrow R=\dfrac{10}{1} \\
\end{align}\]
Therefore, the ratio of the maximum and minimum resistance is 10:1.
As the values the average and ratio of \[{{R}_{\max }}\] and \[{{R}_{\min }}\] are \[\dfrac{22}{4},10:1\].
So, the correct answer is “Option C”.
Note:
The average of the values of the maximum and minimum resistance can be found by first adding the maximum and minimum values and then dividing this value by 2. The ratio of the values of the maximum and minimum resistance can be found by dividing the values of the maximum and minimum resistance.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Difference Between Plant Cell and Animal Cell
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE