Answer
Verified
380.4k+ views
Hint: Here, in the question, we have been given position vectors of three points, which are collinear. And we are asked to find the relation between the variables present in their vectors. We will first understand the position vectors, meaning of three collinear points and then solve to find the desired relation.
Complete step-by-step solution:
Let the three given points be \[A,B\] and \[C\]. Therefore, their position vectors are given as,
\[\overrightarrow {OA} = x\hat i + y\hat j + z\hat k \\
\overrightarrow {OB} = \hat i + z\hat j \\
\overrightarrow {OC} = - \hat i - \hat j \]
Now, let us first understand the meaning of position vector and other terms.
Position Vector: Position vector is a vector that extends from the reference point of time to the particle. Generally, we take the origin of the coordinate system as the reference point.
Position vector of a point \[P\left( {x,y,z} \right)\] is given as \[\overrightarrow {OP} = x\hat i + y\hat j + z\hat k\] and its magnitude as \[\left| {\overrightarrow {OP} } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \], where \[O\] is the origin.
Collinear points: If two or more points lie on the same line, then the points are said to be collinear.
Now, we know that, If \[{P_1}\left( {{x_1},{y_1},{z_1}} \right)\& {P_2}\left( {{x_2},{y_2},{z_2}} \right)\] are two points, then the vector joining these two points will be written as \[\overrightarrow {{P_1},{P_2}} = \left( {{x_2} - {x_1}} \right)\hat i + \left( {{y_2} - {y_1}} \right)\hat j + \left( {{z_2} - {z_1}} \right)\hat k\]. Therefore,
\[\overrightarrow {AB} = \left( {1 - x} \right)\hat i + \left( {z - y} \right)\hat j + \left( {0 - z} \right)\hat k \\
\overrightarrow {BC} = \left( { - 1 - 1} \right)\hat i + \left( { - 1 - z} \right)\hat j \]
Since, points \[A,B\] and \[C\] are collinear, we have \[\overrightarrow {AB} = \lambda \overrightarrow {BC} \], i.e.,
\[\left[ {\left( {1 - x} \right)\hat i + \left( {z - y} \right)\hat j + \left( { - z} \right)\hat k} \right] = \lambda \left[ {\left( { - 2} \right)\hat i + \left( { - 1 - z} \right)\hat j} \right]\]
Taking corresponding values equal, we get,
\[ - z = 0 \\
\Rightarrow z = 0 \],
\[1 - x = - 2\lambda \\
\Rightarrow x = 2\lambda + 1\],
\[ z - y = \lambda \left( { - 1 - z} \right) \\
\Rightarrow 0 - y = \lambda \left( { - 1} \right) \\
\Rightarrow y = \lambda \]
According to the values we have got for \[x,y,z\], the relation between them is \[x - 2y = 1,z = 0\].
Hence option A). \[x - 2y = 1,z = 0\] is the correct option.
Note: We had to find out the relation between two variables, that’s why we used this \[\overrightarrow {AB} = \lambda \overrightarrow {BC} \]. In case we are given three position vectors and we have to find one common variable between them, we can use the fact that the scalar triple product of all three vectors is zero if the three points given are collinear points.
Complete step-by-step solution:
Let the three given points be \[A,B\] and \[C\]. Therefore, their position vectors are given as,
\[\overrightarrow {OA} = x\hat i + y\hat j + z\hat k \\
\overrightarrow {OB} = \hat i + z\hat j \\
\overrightarrow {OC} = - \hat i - \hat j \]
Now, let us first understand the meaning of position vector and other terms.
Position Vector: Position vector is a vector that extends from the reference point of time to the particle. Generally, we take the origin of the coordinate system as the reference point.
Position vector of a point \[P\left( {x,y,z} \right)\] is given as \[\overrightarrow {OP} = x\hat i + y\hat j + z\hat k\] and its magnitude as \[\left| {\overrightarrow {OP} } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \], where \[O\] is the origin.
Collinear points: If two or more points lie on the same line, then the points are said to be collinear.
Now, we know that, If \[{P_1}\left( {{x_1},{y_1},{z_1}} \right)\& {P_2}\left( {{x_2},{y_2},{z_2}} \right)\] are two points, then the vector joining these two points will be written as \[\overrightarrow {{P_1},{P_2}} = \left( {{x_2} - {x_1}} \right)\hat i + \left( {{y_2} - {y_1}} \right)\hat j + \left( {{z_2} - {z_1}} \right)\hat k\]. Therefore,
\[\overrightarrow {AB} = \left( {1 - x} \right)\hat i + \left( {z - y} \right)\hat j + \left( {0 - z} \right)\hat k \\
\overrightarrow {BC} = \left( { - 1 - 1} \right)\hat i + \left( { - 1 - z} \right)\hat j \]
Since, points \[A,B\] and \[C\] are collinear, we have \[\overrightarrow {AB} = \lambda \overrightarrow {BC} \], i.e.,
\[\left[ {\left( {1 - x} \right)\hat i + \left( {z - y} \right)\hat j + \left( { - z} \right)\hat k} \right] = \lambda \left[ {\left( { - 2} \right)\hat i + \left( { - 1 - z} \right)\hat j} \right]\]
Taking corresponding values equal, we get,
\[ - z = 0 \\
\Rightarrow z = 0 \],
\[1 - x = - 2\lambda \\
\Rightarrow x = 2\lambda + 1\],
\[ z - y = \lambda \left( { - 1 - z} \right) \\
\Rightarrow 0 - y = \lambda \left( { - 1} \right) \\
\Rightarrow y = \lambda \]
According to the values we have got for \[x,y,z\], the relation between them is \[x - 2y = 1,z = 0\].
Hence option A). \[x - 2y = 1,z = 0\] is the correct option.
Note: We had to find out the relation between two variables, that’s why we used this \[\overrightarrow {AB} = \lambda \overrightarrow {BC} \]. In case we are given three position vectors and we have to find one common variable between them, we can use the fact that the scalar triple product of all three vectors is zero if the three points given are collinear points.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell