
Three points whose position vectors are \[x\hat i + y\hat j + z\hat k\], \[\hat i + z\hat j\] and \[ - \hat i - \hat j\] are collinear, then relation between \[x,y,z\] is:
A). \[x - 2y = 1,z = 0\]
B). \[x + y = 1,z = 0\]
C). \[x - y = 1,z = 0\]
D). \[x + 2y = 1,z = 0\]
Answer
500.4k+ views
Hint: Here, in the question, we have been given position vectors of three points, which are collinear. And we are asked to find the relation between the variables present in their vectors. We will first understand the position vectors, meaning of three collinear points and then solve to find the desired relation.
Complete step-by-step solution:
Let the three given points be \[A,B\] and \[C\]. Therefore, their position vectors are given as,
\[\overrightarrow {OA} = x\hat i + y\hat j + z\hat k \\
\overrightarrow {OB} = \hat i + z\hat j \\
\overrightarrow {OC} = - \hat i - \hat j \]
Now, let us first understand the meaning of position vector and other terms.
Position Vector: Position vector is a vector that extends from the reference point of time to the particle. Generally, we take the origin of the coordinate system as the reference point.
Position vector of a point \[P\left( {x,y,z} \right)\] is given as \[\overrightarrow {OP} = x\hat i + y\hat j + z\hat k\] and its magnitude as \[\left| {\overrightarrow {OP} } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \], where \[O\] is the origin.
Collinear points: If two or more points lie on the same line, then the points are said to be collinear.
Now, we know that, If \[{P_1}\left( {{x_1},{y_1},{z_1}} \right)\& {P_2}\left( {{x_2},{y_2},{z_2}} \right)\] are two points, then the vector joining these two points will be written as \[\overrightarrow {{P_1},{P_2}} = \left( {{x_2} - {x_1}} \right)\hat i + \left( {{y_2} - {y_1}} \right)\hat j + \left( {{z_2} - {z_1}} \right)\hat k\]. Therefore,
\[\overrightarrow {AB} = \left( {1 - x} \right)\hat i + \left( {z - y} \right)\hat j + \left( {0 - z} \right)\hat k \\
\overrightarrow {BC} = \left( { - 1 - 1} \right)\hat i + \left( { - 1 - z} \right)\hat j \]
Since, points \[A,B\] and \[C\] are collinear, we have \[\overrightarrow {AB} = \lambda \overrightarrow {BC} \], i.e.,
\[\left[ {\left( {1 - x} \right)\hat i + \left( {z - y} \right)\hat j + \left( { - z} \right)\hat k} \right] = \lambda \left[ {\left( { - 2} \right)\hat i + \left( { - 1 - z} \right)\hat j} \right]\]
Taking corresponding values equal, we get,
\[ - z = 0 \\
\Rightarrow z = 0 \],
\[1 - x = - 2\lambda \\
\Rightarrow x = 2\lambda + 1\],
\[ z - y = \lambda \left( { - 1 - z} \right) \\
\Rightarrow 0 - y = \lambda \left( { - 1} \right) \\
\Rightarrow y = \lambda \]
According to the values we have got for \[x,y,z\], the relation between them is \[x - 2y = 1,z = 0\].
Hence option A). \[x - 2y = 1,z = 0\] is the correct option.
Note: We had to find out the relation between two variables, that’s why we used this \[\overrightarrow {AB} = \lambda \overrightarrow {BC} \]. In case we are given three position vectors and we have to find one common variable between them, we can use the fact that the scalar triple product of all three vectors is zero if the three points given are collinear points.
Complete step-by-step solution:
Let the three given points be \[A,B\] and \[C\]. Therefore, their position vectors are given as,
\[\overrightarrow {OA} = x\hat i + y\hat j + z\hat k \\
\overrightarrow {OB} = \hat i + z\hat j \\
\overrightarrow {OC} = - \hat i - \hat j \]
Now, let us first understand the meaning of position vector and other terms.
Position Vector: Position vector is a vector that extends from the reference point of time to the particle. Generally, we take the origin of the coordinate system as the reference point.
Position vector of a point \[P\left( {x,y,z} \right)\] is given as \[\overrightarrow {OP} = x\hat i + y\hat j + z\hat k\] and its magnitude as \[\left| {\overrightarrow {OP} } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \], where \[O\] is the origin.
Collinear points: If two or more points lie on the same line, then the points are said to be collinear.
Now, we know that, If \[{P_1}\left( {{x_1},{y_1},{z_1}} \right)\& {P_2}\left( {{x_2},{y_2},{z_2}} \right)\] are two points, then the vector joining these two points will be written as \[\overrightarrow {{P_1},{P_2}} = \left( {{x_2} - {x_1}} \right)\hat i + \left( {{y_2} - {y_1}} \right)\hat j + \left( {{z_2} - {z_1}} \right)\hat k\]. Therefore,
\[\overrightarrow {AB} = \left( {1 - x} \right)\hat i + \left( {z - y} \right)\hat j + \left( {0 - z} \right)\hat k \\
\overrightarrow {BC} = \left( { - 1 - 1} \right)\hat i + \left( { - 1 - z} \right)\hat j \]
Since, points \[A,B\] and \[C\] are collinear, we have \[\overrightarrow {AB} = \lambda \overrightarrow {BC} \], i.e.,
\[\left[ {\left( {1 - x} \right)\hat i + \left( {z - y} \right)\hat j + \left( { - z} \right)\hat k} \right] = \lambda \left[ {\left( { - 2} \right)\hat i + \left( { - 1 - z} \right)\hat j} \right]\]
Taking corresponding values equal, we get,
\[ - z = 0 \\
\Rightarrow z = 0 \],
\[1 - x = - 2\lambda \\
\Rightarrow x = 2\lambda + 1\],
\[ z - y = \lambda \left( { - 1 - z} \right) \\
\Rightarrow 0 - y = \lambda \left( { - 1} \right) \\
\Rightarrow y = \lambda \]
According to the values we have got for \[x,y,z\], the relation between them is \[x - 2y = 1,z = 0\].
Hence option A). \[x - 2y = 1,z = 0\] is the correct option.
Note: We had to find out the relation between two variables, that’s why we used this \[\overrightarrow {AB} = \lambda \overrightarrow {BC} \]. In case we are given three position vectors and we have to find one common variable between them, we can use the fact that the scalar triple product of all three vectors is zero if the three points given are collinear points.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

