
The work done by a magnetic field, on a moving charge is
(A) Zero because $\vec F$ acts parallel to $\vec v$.
(B) Positive because $\vec F$ acts perpendicular to $\vec v$
(C) Zero because $\vec F$acts perpendicular to $\vec v$
(D) Negative because $\vec F$acts parallel to $\vec v$
Answer
558.9k+ views
Hint The direction of the force of the magnetic field acting on a moving charge is given by the Right hand rule. Work is said to be done if a force is applied on a body through a distance which in the direction of the force
In this solution we will be using the following formula;
$\Rightarrow \vec F = q\vec v \times \vec B$ where $F$ is the magnetic force, $q$ is the charge of the particle, $\vec v$ is the velocity of the particle and $\vec B$ is the magnetic field in the region. The $ \times $ symbol in this case signifies a cross product. $W = \vec F \cdot \vec r$ where $W$ is the work done by the force $F$, and $r$ is the distance moved by the body while the force is being applied.
Complete step by step answer
When a body is in a magnetic field, the force exerted by the magnetic field is determined by
$F = q\vec v \times \vec B$ where $q$ is the charge of the particle, $\vec v$ is the velocity of the particle and $\vec B$ is the magnetic field in the region. The $ \times $ symbol in this case signifies cross product
This can be written in magnitude only form as
$\Rightarrow F = qvB\sin \theta $ where $\theta $ is the angle between the velocity $v$ and the field $B$. However since cross product is involved, the direction of the force $F$ is always perpendicular to both the field and the velocity, as given by the Right hand rule. Since $v$ and $r$ are always in the same direction, then $F$ is perpendicular to $r$.
Now work is only done when the distance moved by the object is, or has a component, parallel to the force.
Hence, since they are perpendicular (no component parallel) the work done is Zero.
Hence, the correct option is C.
Note
Alternatively, in mathematical terms, since work is given as
$\Rightarrow W = \vec F \cdot \vec r$ and $r = vt$
Hence, by replacement
$\Rightarrow W = \vec F \cdot \vec vt$. Work can be written as
$\Rightarrow W = Fvt\cos \theta $ where $\theta $ is the angle between $v$ and $F$.
Since they are perpendicular, then $\theta = 90^\circ $
Hence.
$\Rightarrow W = Fvt\cos 90 = 0$
$\therefore W = 0$.
In this solution we will be using the following formula;
$\Rightarrow \vec F = q\vec v \times \vec B$ where $F$ is the magnetic force, $q$ is the charge of the particle, $\vec v$ is the velocity of the particle and $\vec B$ is the magnetic field in the region. The $ \times $ symbol in this case signifies a cross product. $W = \vec F \cdot \vec r$ where $W$ is the work done by the force $F$, and $r$ is the distance moved by the body while the force is being applied.
Complete step by step answer
When a body is in a magnetic field, the force exerted by the magnetic field is determined by
$F = q\vec v \times \vec B$ where $q$ is the charge of the particle, $\vec v$ is the velocity of the particle and $\vec B$ is the magnetic field in the region. The $ \times $ symbol in this case signifies cross product
This can be written in magnitude only form as
$\Rightarrow F = qvB\sin \theta $ where $\theta $ is the angle between the velocity $v$ and the field $B$. However since cross product is involved, the direction of the force $F$ is always perpendicular to both the field and the velocity, as given by the Right hand rule. Since $v$ and $r$ are always in the same direction, then $F$ is perpendicular to $r$.
Now work is only done when the distance moved by the object is, or has a component, parallel to the force.
Hence, since they are perpendicular (no component parallel) the work done is Zero.
Hence, the correct option is C.
Note
Alternatively, in mathematical terms, since work is given as
$\Rightarrow W = \vec F \cdot \vec r$ and $r = vt$
Hence, by replacement
$\Rightarrow W = \vec F \cdot \vec vt$. Work can be written as
$\Rightarrow W = Fvt\cos \theta $ where $\theta $ is the angle between $v$ and $F$.
Since they are perpendicular, then $\theta = 90^\circ $
Hence.
$\Rightarrow W = Fvt\cos 90 = 0$
$\therefore W = 0$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

