
The velocity of projection of oblique projectile is $(6 \hat{i}+8 \widehat{j}) m s^{-1} .$ The horizontal range of the projectile is
A.$4.9 \mathrm{~m}$
B.$9.6~\text{m}$
C.$19.6 \mathrm{~m}$
D.$14 \mathrm{~m}$
Answer
551.7k+ views
Hint: A projectile is an object that we give, and gravity acts on an initial velocity. The horizontal range is the distance along the horizontal plane of a projectile. In addition, it would travel before it reached the same vertical position from which it began. Split the vector into its X an Y coordinates and Calculate R using Newton's law of motion.
Formula used:
$\text{R}=\dfrac{{{\text{v}}^{2}}\sin 2\theta }{\text{g}}$
Complete Step-by-Step solution:
The projectile's horizontal motion is the result of any object in motion's tendency to remain in motion at constant velocity. Because of the absence of horizontal forces, a projectile with a constant horizontal velocity stays in motion.
After that, the horizontal range is depending upon the initial velocity V0, the launch angle θ, and the acceleration occurring due to the gravity.
$\overrightarrow{\mathrm{v}}=6 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}$
Comparing with $\overrightarrow{\mathrm{v}}=\mathrm{v}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{v}_{\mathrm{y}} \hat{\mathrm{j}}$ we get
$\mathrm{v}_{\mathrm{x}}=6 \mathrm{~ms}^{-1}$ and $\mathrm{v}_{\mathrm{y}}=8 \mathrm{~ms}^{-1}$
also $\mathrm{v}^{2}=\mathrm{v}_{\mathrm{x}}^{2}+\mathrm{v}_{\mathrm{y}}^{2}=36+64=100$
or $\mathrm{v}=10 \mathrm{~ms}^{-1}$
$\sin \theta=\dfrac{8}{10}$ and $\cos \theta=\dfrac{6}{10}$
$\mathrm{R}=\dfrac{\mathrm{v}^{2} \sin 2 \theta}{\mathrm{g}}=\dfrac{2 \mathrm{v}^{2} \sin \theta \cos \theta}{\mathrm{g}}$
$\text{R}=2\times 10\times 10\times \dfrac{8}{10}\times \dfrac{6}{10}\times \dfrac{1}{10}$
$\therefore \text{R}=9.6~\text{m}$
The horizontal range of the projectile is: $9.6~\text{m}$
Hence, the correct option is (B).
Note:
The greater the release level, the greater the distance covered in flight. This is because the greater the release of the projectile, the longer it will be in the air. The horizontal component will act for longer on the projectile. In order to provide the equation for the horizontal distance, the slope percent equation can be rearranged. Rearrange equation terms: multiply both sides by running. Split both sides by slope percentage. The initial launch angle will be anywhere from 0 to 90 degrees for an object launched into projectile motion.
Formula used:
$\text{R}=\dfrac{{{\text{v}}^{2}}\sin 2\theta }{\text{g}}$
Complete Step-by-Step solution:
The projectile's horizontal motion is the result of any object in motion's tendency to remain in motion at constant velocity. Because of the absence of horizontal forces, a projectile with a constant horizontal velocity stays in motion.
After that, the horizontal range is depending upon the initial velocity V0, the launch angle θ, and the acceleration occurring due to the gravity.
$\overrightarrow{\mathrm{v}}=6 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}$
Comparing with $\overrightarrow{\mathrm{v}}=\mathrm{v}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{v}_{\mathrm{y}} \hat{\mathrm{j}}$ we get
$\mathrm{v}_{\mathrm{x}}=6 \mathrm{~ms}^{-1}$ and $\mathrm{v}_{\mathrm{y}}=8 \mathrm{~ms}^{-1}$
also $\mathrm{v}^{2}=\mathrm{v}_{\mathrm{x}}^{2}+\mathrm{v}_{\mathrm{y}}^{2}=36+64=100$
or $\mathrm{v}=10 \mathrm{~ms}^{-1}$
$\sin \theta=\dfrac{8}{10}$ and $\cos \theta=\dfrac{6}{10}$
$\mathrm{R}=\dfrac{\mathrm{v}^{2} \sin 2 \theta}{\mathrm{g}}=\dfrac{2 \mathrm{v}^{2} \sin \theta \cos \theta}{\mathrm{g}}$
$\text{R}=2\times 10\times 10\times \dfrac{8}{10}\times \dfrac{6}{10}\times \dfrac{1}{10}$
$\therefore \text{R}=9.6~\text{m}$
The horizontal range of the projectile is: $9.6~\text{m}$
Hence, the correct option is (B).
Note:
The greater the release level, the greater the distance covered in flight. This is because the greater the release of the projectile, the longer it will be in the air. The horizontal component will act for longer on the projectile. In order to provide the equation for the horizontal distance, the slope percent equation can be rearranged. Rearrange equation terms: multiply both sides by running. Split both sides by slope percentage. The initial launch angle will be anywhere from 0 to 90 degrees for an object launched into projectile motion.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

