
The variation of square of the speed of sound $\left( {{V}^{2}} \right)$ and absolute temperature of a gas $\left( T \right)$ is shown correctly by,
A.
B.
C.
D.




Answer
480k+ views
Hint: We know that in order to find the correct plot showing the variation of ${{V}^{2}}$with temperature, we should know how they are related to each other. You could either recall such a relation directly or you could derive it from some known relation and doing necessary substitutions. From the relation so found, you could easily answer the question.
Formula used:
Speed of sound,
${{V}_{s}}=\sqrt{\dfrac{\gamma RT}{M}}$
Complete Step by step solution:
In the question, we are asked to find which among the given options correctly represents the variation of the square of the speed of sound with absolute temperature. In order for us to answer this question, we should firstly find out the relation between these two quantities.
You may recall that the velocity of sound is given by,
${{V}_{s}}=\sqrt{\dfrac{\gamma P}{\rho }}$ ……………………………………………… (1)
Where,$\gamma $ is the adiabatic index, P is the pressure of the gas and $\rho $ is the density.
But we need to find a relation in terms of the absolute temperature of the gas. For that, we could recall ideal gas equation given by,
$PV=nRT$
$\Rightarrow P=\dfrac{RT}{V}=\dfrac{RT}{\dfrac{M}{\rho }}$
$\therefore \rho =\dfrac{PM}{RT}$ ……………………………………………….. (2)
Substituting (2) in (1), we get,
${{V}_{s}}=\sqrt{\dfrac{\gamma RT}{M}}$ ……………………………………………. (3)
Where, M is the molar mass of the gas, R is the universal gas constant and T is the absolute temperature.
Squaring equation (3) on both sides we get,
${{V}_{s}}^{2}=\dfrac{\gamma R}{M}T$
But we know that $\gamma $ and M for a particular gas would be constant and R is a universal constant, so,
${{V}_{s}}^{2}=kT$ ………………………………………………….. (4)
Where, k is a constant.
Now, you may recall that equation of a straight line is given by,
$y=mx+c$
Comparing with (4) we see that,
$y={{V}_{s}}^{2}$
$m=k$
$x=T$
$c=0$
So, we could conclude that equation (4) represents a straight line with intercept zero (passes through origin) and as $k=\dfrac{\gamma R}{M}$ is the slope here it would be a positive slope. Therefore, we found that, the variation of square of the speed of sound $\left( {{V}^{2}} \right)$ and absolute temperature of a gas $\left( T \right)$ is shown correctly by,
Hence, option A is found to be the correct answer.
Note:
We could define the speed of sound as the distance travelled by a sound wave per unit time. This speed has negligible dependence on frequency and pressure in ordinary air thus slightly deviating from the ideal behavior. In the case of ideal gas as the medium of propagation, the speed only depends on composition and temperature.
Formula used:
Speed of sound,
${{V}_{s}}=\sqrt{\dfrac{\gamma RT}{M}}$
Complete Step by step solution:
In the question, we are asked to find which among the given options correctly represents the variation of the square of the speed of sound with absolute temperature. In order for us to answer this question, we should firstly find out the relation between these two quantities.
You may recall that the velocity of sound is given by,
${{V}_{s}}=\sqrt{\dfrac{\gamma P}{\rho }}$ ……………………………………………… (1)
Where,$\gamma $ is the adiabatic index, P is the pressure of the gas and $\rho $ is the density.
But we need to find a relation in terms of the absolute temperature of the gas. For that, we could recall ideal gas equation given by,
$PV=nRT$
$\Rightarrow P=\dfrac{RT}{V}=\dfrac{RT}{\dfrac{M}{\rho }}$
$\therefore \rho =\dfrac{PM}{RT}$ ……………………………………………….. (2)
Substituting (2) in (1), we get,
${{V}_{s}}=\sqrt{\dfrac{\gamma RT}{M}}$ ……………………………………………. (3)
Where, M is the molar mass of the gas, R is the universal gas constant and T is the absolute temperature.
Squaring equation (3) on both sides we get,
${{V}_{s}}^{2}=\dfrac{\gamma R}{M}T$
But we know that $\gamma $ and M for a particular gas would be constant and R is a universal constant, so,
${{V}_{s}}^{2}=kT$ ………………………………………………….. (4)
Where, k is a constant.
Now, you may recall that equation of a straight line is given by,
$y=mx+c$
Comparing with (4) we see that,
$y={{V}_{s}}^{2}$
$m=k$
$x=T$
$c=0$
So, we could conclude that equation (4) represents a straight line with intercept zero (passes through origin) and as $k=\dfrac{\gamma R}{M}$ is the slope here it would be a positive slope. Therefore, we found that, the variation of square of the speed of sound $\left( {{V}^{2}} \right)$ and absolute temperature of a gas $\left( T \right)$ is shown correctly by,

Hence, option A is found to be the correct answer.
Note:
We could define the speed of sound as the distance travelled by a sound wave per unit time. This speed has negligible dependence on frequency and pressure in ordinary air thus slightly deviating from the ideal behavior. In the case of ideal gas as the medium of propagation, the speed only depends on composition and temperature.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
