Answer
Verified
467.4k+ views
Hint:
Mole Fraction of A in a solution of A and B can be calculated using the formula:
${X_A} = \dfrac{{n.A}}{{n.A + n.B}}$
Where ${X_A}$ = Mole Fraction of A
n.A = No. of Moles of A
n.B = No. of Moles of B
Complete step by step answer:
We are given a solution of ethanol and methanol. Moreover, it is an ideal solution, so we can eliminate the possibility that there is any impurity in the solution that might affect our calculations.
When trying to use the above given formula in our question, substitute A for Methanol and B for methanol.
Hence,
${X_{C{H_3}OH}} = \dfrac{{n.C{H_3}OH}}{{n.C{H_3}OH + n.{C_2}{H_5}OH}}$
Now, since we do not have the values for the number of moles for either Ethanol or Methanol,
We can calculate the number of moles using the following formula:
${\text{No}}{\text{. of Moles of A = }}\dfrac{{{\text{Weight of the given sample of A}}}}{{{\text{Atomic/molecular weight of A}}}}$
Now,
Calculating the molecular weights of ethanol and methanol we get:
mol. weight of methanol = 1(atomic weight of carbon) +4(atomic weight of hydrogen)
+1(atomic weight of oxygen)
= 1(12) +4(1) + 1(16)
= 32 gm/mol
mol. weight of ethanol = 2(atomic weight of carbon) +6(atomic weight of hydrogen)
+1(atomic weight of oxygen)
= 2(12) +6(1) +1(16)
= 46m/mol
Substituting the above derived values in the formula for calculating the Mole Fraction, we get;
$\dfrac{{\dfrac{{16}}{{32}}}}{{\dfrac{{16}}{{32}} + \dfrac{{46}}{{46}}}} = \dfrac{{0.5}}{{1.5}}$
Hence, \[{X_{C{H_3}OH}} = \dfrac{1}{3}\]
In any given solution, when we add the mole fractions of all constituents, we get the sum to turn out as 1.
Using the same theory, we can calculate the mole fraction of ethanol.
i.e., ${X_{{C_2}{H_5}OH}} = \dfrac{2}{3}$
Now, the total pressure can be calculated using the following relation,
where a = ethanol
b = methanol
${P_{total}} = X{}_a{P_a} + X{}_b{P_b} = 42 \times \dfrac{2}{3} + 88.5 \times \dfrac{1}{3} = 57.5$mm of Hg
So, the mole fraction of methanol vapor = $\dfrac{{{P_b} \times {X_b}}}{{{P_{total}}}} = \dfrac{{88.5 \times \dfrac{1}{3}}}{{57.5}} = 0.513$
Hence, Option C is the correct answer.
Note:
Mole fraction is also known as molar fraction. Mole fraction is temperature independent. When added together the mole fraction of all components of a solution will be equal to 1.
Mole Fraction of A in a solution of A and B can be calculated using the formula:
${X_A} = \dfrac{{n.A}}{{n.A + n.B}}$
Where ${X_A}$ = Mole Fraction of A
n.A = No. of Moles of A
n.B = No. of Moles of B
Complete step by step answer:
We are given a solution of ethanol and methanol. Moreover, it is an ideal solution, so we can eliminate the possibility that there is any impurity in the solution that might affect our calculations.
When trying to use the above given formula in our question, substitute A for Methanol and B for methanol.
Hence,
${X_{C{H_3}OH}} = \dfrac{{n.C{H_3}OH}}{{n.C{H_3}OH + n.{C_2}{H_5}OH}}$
Now, since we do not have the values for the number of moles for either Ethanol or Methanol,
We can calculate the number of moles using the following formula:
${\text{No}}{\text{. of Moles of A = }}\dfrac{{{\text{Weight of the given sample of A}}}}{{{\text{Atomic/molecular weight of A}}}}$
Now,
Calculating the molecular weights of ethanol and methanol we get:
mol. weight of methanol = 1(atomic weight of carbon) +4(atomic weight of hydrogen)
+1(atomic weight of oxygen)
= 1(12) +4(1) + 1(16)
= 32 gm/mol
mol. weight of ethanol = 2(atomic weight of carbon) +6(atomic weight of hydrogen)
+1(atomic weight of oxygen)
= 2(12) +6(1) +1(16)
= 46m/mol
Substituting the above derived values in the formula for calculating the Mole Fraction, we get;
$\dfrac{{\dfrac{{16}}{{32}}}}{{\dfrac{{16}}{{32}} + \dfrac{{46}}{{46}}}} = \dfrac{{0.5}}{{1.5}}$
Hence, \[{X_{C{H_3}OH}} = \dfrac{1}{3}\]
In any given solution, when we add the mole fractions of all constituents, we get the sum to turn out as 1.
Using the same theory, we can calculate the mole fraction of ethanol.
i.e., ${X_{{C_2}{H_5}OH}} = \dfrac{2}{3}$
Now, the total pressure can be calculated using the following relation,
where a = ethanol
b = methanol
${P_{total}} = X{}_a{P_a} + X{}_b{P_b} = 42 \times \dfrac{2}{3} + 88.5 \times \dfrac{1}{3} = 57.5$mm of Hg
So, the mole fraction of methanol vapor = $\dfrac{{{P_b} \times {X_b}}}{{{P_{total}}}} = \dfrac{{88.5 \times \dfrac{1}{3}}}{{57.5}} = 0.513$
Hence, Option C is the correct answer.
Note:
Mole fraction is also known as molar fraction. Mole fraction is temperature independent. When added together the mole fraction of all components of a solution will be equal to 1.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it