
The vapour pressures of ethanol and methanol are 42.0 mm of Hg and 88.5mm of Hg, respectively. An ideal solution is formed at the same temperature by mixing 46.0 gm of ethanol and 16.0 gm of methanol. The mole fraction of methanol vapour is:
A.0.467
B.0.502
C.0.513
D.0.556:
Answer
582.3k+ views
Hint:
Mole Fraction of A in a solution of A and B can be calculated using the formula:
${X_A} = \dfrac{{n.A}}{{n.A + n.B}}$
Where ${X_A}$ = Mole Fraction of A
n.A = No. of Moles of A
n.B = No. of Moles of B
Complete step by step answer:
We are given a solution of ethanol and methanol. Moreover, it is an ideal solution, so we can eliminate the possibility that there is any impurity in the solution that might affect our calculations.
When trying to use the above given formula in our question, substitute A for Methanol and B for methanol.
Hence,
${X_{C{H_3}OH}} = \dfrac{{n.C{H_3}OH}}{{n.C{H_3}OH + n.{C_2}{H_5}OH}}$
Now, since we do not have the values for the number of moles for either Ethanol or Methanol,
We can calculate the number of moles using the following formula:
${\text{No}}{\text{. of Moles of A = }}\dfrac{{{\text{Weight of the given sample of A}}}}{{{\text{Atomic/molecular weight of A}}}}$
Now,
Calculating the molecular weights of ethanol and methanol we get:
mol. weight of methanol = 1(atomic weight of carbon) +4(atomic weight of hydrogen)
+1(atomic weight of oxygen)
= 1(12) +4(1) + 1(16)
= 32 gm/mol
mol. weight of ethanol = 2(atomic weight of carbon) +6(atomic weight of hydrogen)
+1(atomic weight of oxygen)
= 2(12) +6(1) +1(16)
= 46m/mol
Substituting the above derived values in the formula for calculating the Mole Fraction, we get;
$\dfrac{{\dfrac{{16}}{{32}}}}{{\dfrac{{16}}{{32}} + \dfrac{{46}}{{46}}}} = \dfrac{{0.5}}{{1.5}}$
Hence, \[{X_{C{H_3}OH}} = \dfrac{1}{3}\]
In any given solution, when we add the mole fractions of all constituents, we get the sum to turn out as 1.
Using the same theory, we can calculate the mole fraction of ethanol.
i.e., ${X_{{C_2}{H_5}OH}} = \dfrac{2}{3}$
Now, the total pressure can be calculated using the following relation,
where a = ethanol
b = methanol
${P_{total}} = X{}_a{P_a} + X{}_b{P_b} = 42 \times \dfrac{2}{3} + 88.5 \times \dfrac{1}{3} = 57.5$mm of Hg
So, the mole fraction of methanol vapor = $\dfrac{{{P_b} \times {X_b}}}{{{P_{total}}}} = \dfrac{{88.5 \times \dfrac{1}{3}}}{{57.5}} = 0.513$
Hence, Option C is the correct answer.
Note:
Mole fraction is also known as molar fraction. Mole fraction is temperature independent. When added together the mole fraction of all components of a solution will be equal to 1.
Mole Fraction of A in a solution of A and B can be calculated using the formula:
${X_A} = \dfrac{{n.A}}{{n.A + n.B}}$
Where ${X_A}$ = Mole Fraction of A
n.A = No. of Moles of A
n.B = No. of Moles of B
Complete step by step answer:
We are given a solution of ethanol and methanol. Moreover, it is an ideal solution, so we can eliminate the possibility that there is any impurity in the solution that might affect our calculations.
When trying to use the above given formula in our question, substitute A for Methanol and B for methanol.
Hence,
${X_{C{H_3}OH}} = \dfrac{{n.C{H_3}OH}}{{n.C{H_3}OH + n.{C_2}{H_5}OH}}$
Now, since we do not have the values for the number of moles for either Ethanol or Methanol,
We can calculate the number of moles using the following formula:
${\text{No}}{\text{. of Moles of A = }}\dfrac{{{\text{Weight of the given sample of A}}}}{{{\text{Atomic/molecular weight of A}}}}$
Now,
Calculating the molecular weights of ethanol and methanol we get:
mol. weight of methanol = 1(atomic weight of carbon) +4(atomic weight of hydrogen)
+1(atomic weight of oxygen)
= 1(12) +4(1) + 1(16)
= 32 gm/mol
mol. weight of ethanol = 2(atomic weight of carbon) +6(atomic weight of hydrogen)
+1(atomic weight of oxygen)
= 2(12) +6(1) +1(16)
= 46m/mol
Substituting the above derived values in the formula for calculating the Mole Fraction, we get;
$\dfrac{{\dfrac{{16}}{{32}}}}{{\dfrac{{16}}{{32}} + \dfrac{{46}}{{46}}}} = \dfrac{{0.5}}{{1.5}}$
Hence, \[{X_{C{H_3}OH}} = \dfrac{1}{3}\]
In any given solution, when we add the mole fractions of all constituents, we get the sum to turn out as 1.
Using the same theory, we can calculate the mole fraction of ethanol.
i.e., ${X_{{C_2}{H_5}OH}} = \dfrac{2}{3}$
Now, the total pressure can be calculated using the following relation,
where a = ethanol
b = methanol
${P_{total}} = X{}_a{P_a} + X{}_b{P_b} = 42 \times \dfrac{2}{3} + 88.5 \times \dfrac{1}{3} = 57.5$mm of Hg
So, the mole fraction of methanol vapor = $\dfrac{{{P_b} \times {X_b}}}{{{P_{total}}}} = \dfrac{{88.5 \times \dfrac{1}{3}}}{{57.5}} = 0.513$
Hence, Option C is the correct answer.
Note:
Mole fraction is also known as molar fraction. Mole fraction is temperature independent. When added together the mole fraction of all components of a solution will be equal to 1.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

