# The value of the integral $\int {{e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $is

$

{\text{a}}{\text{. }}{{\text{e}}^x}f'\left( x \right) + c \\

{\text{b}}{\text{. }}{{\text{e}}^x}f\left( x \right) + c{\text{ }} \\

{\text{c}}{\text{. }}\dfrac{{{e^x}}}{{f\left( x \right)}} + c \\

{\text{d}}{\text{. }}\dfrac{{{e^x}}}{{f'\left( x \right)}} + c \\

$

Answer

Verified

384k+ views

Hint: - Apply integration by parts method to reach the answer which is given as

$\int {\left( {{I_1}} \right)\left( {{I_2}} \right)dx = {I_1}} \int {\left( {{I_2}} \right)dx - \int {\left( {\left( {\dfrac{d}{{dx}}{I_1}} \right)\int {\left( {{I_2}} \right)dx} } \right)} } dx$

Given integral is

$I = \int {{e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $

Now break the integration into two parts

$ \Rightarrow I = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx + \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} } $

Let $I = {I_1} + {I_2}................................\left( 1 \right)$

First solve ${I_1}$

${I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} $

Now integrate it by parts where $f\left( x \right)$ is the first part and ${e^x}$ is the second part.

$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = f\left( x \right)\int {{e^x}dx - \int {\left( {\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)\left( {\int {{e^x}dx} } \right)} \right)dx} } $

As we know$\int {{e^x}dx = {e^x},{\text{ }}} \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right)$, so apply this property

$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c} $, (where c is some arbitrary integration constant)

From equation (1)

$

I = {I_1} + {I_2} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c + } \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} \\

\Rightarrow I = {e^x}f\left( x \right) + c \\

$

Hence, option (b) is correct.

Note: - In such types of questions always remember the key rule that first breaks the integration into parts, then integrate first integration by integration by parts method and leave the second integration as it is, after that it cancels out the second integration, doing this we will get the required answer.

$\int {\left( {{I_1}} \right)\left( {{I_2}} \right)dx = {I_1}} \int {\left( {{I_2}} \right)dx - \int {\left( {\left( {\dfrac{d}{{dx}}{I_1}} \right)\int {\left( {{I_2}} \right)dx} } \right)} } dx$

Given integral is

$I = \int {{e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $

Now break the integration into two parts

$ \Rightarrow I = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx + \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} } $

Let $I = {I_1} + {I_2}................................\left( 1 \right)$

First solve ${I_1}$

${I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} $

Now integrate it by parts where $f\left( x \right)$ is the first part and ${e^x}$ is the second part.

$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = f\left( x \right)\int {{e^x}dx - \int {\left( {\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)\left( {\int {{e^x}dx} } \right)} \right)dx} } $

As we know$\int {{e^x}dx = {e^x},{\text{ }}} \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right)$, so apply this property

$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c} $, (where c is some arbitrary integration constant)

From equation (1)

$

I = {I_1} + {I_2} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c + } \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} \\

\Rightarrow I = {e^x}f\left( x \right) + c \\

$

Hence, option (b) is correct.

Note: - In such types of questions always remember the key rule that first breaks the integration into parts, then integrate first integration by integration by parts method and leave the second integration as it is, after that it cancels out the second integration, doing this we will get the required answer.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Which state has the longest coastline in India A Tamil class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE