Answer
Verified
495k+ views
Hint: - Apply integration by parts method to reach the answer which is given as
$\int {\left( {{I_1}} \right)\left( {{I_2}} \right)dx = {I_1}} \int {\left( {{I_2}} \right)dx - \int {\left( {\left( {\dfrac{d}{{dx}}{I_1}} \right)\int {\left( {{I_2}} \right)dx} } \right)} } dx$
Given integral is
$I = \int {{e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $
Now break the integration into two parts
$ \Rightarrow I = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx + \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} } $
Let $I = {I_1} + {I_2}................................\left( 1 \right)$
First solve ${I_1}$
${I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} $
Now integrate it by parts where $f\left( x \right)$ is the first part and ${e^x}$ is the second part.
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = f\left( x \right)\int {{e^x}dx - \int {\left( {\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)\left( {\int {{e^x}dx} } \right)} \right)dx} } $
As we know$\int {{e^x}dx = {e^x},{\text{ }}} \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right)$, so apply this property
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c} $, (where c is some arbitrary integration constant)
From equation (1)
$
I = {I_1} + {I_2} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c + } \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} \\
\Rightarrow I = {e^x}f\left( x \right) + c \\
$
Hence, option (b) is correct.
Note: - In such types of questions always remember the key rule that first breaks the integration into parts, then integrate first integration by integration by parts method and leave the second integration as it is, after that it cancels out the second integration, doing this we will get the required answer.
$\int {\left( {{I_1}} \right)\left( {{I_2}} \right)dx = {I_1}} \int {\left( {{I_2}} \right)dx - \int {\left( {\left( {\dfrac{d}{{dx}}{I_1}} \right)\int {\left( {{I_2}} \right)dx} } \right)} } dx$
Given integral is
$I = \int {{e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $
Now break the integration into two parts
$ \Rightarrow I = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx + \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} } $
Let $I = {I_1} + {I_2}................................\left( 1 \right)$
First solve ${I_1}$
${I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} $
Now integrate it by parts where $f\left( x \right)$ is the first part and ${e^x}$ is the second part.
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = f\left( x \right)\int {{e^x}dx - \int {\left( {\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)\left( {\int {{e^x}dx} } \right)} \right)dx} } $
As we know$\int {{e^x}dx = {e^x},{\text{ }}} \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right)$, so apply this property
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c} $, (where c is some arbitrary integration constant)
From equation (1)
$
I = {I_1} + {I_2} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c + } \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} \\
\Rightarrow I = {e^x}f\left( x \right) + c \\
$
Hence, option (b) is correct.
Note: - In such types of questions always remember the key rule that first breaks the integration into parts, then integrate first integration by integration by parts method and leave the second integration as it is, after that it cancels out the second integration, doing this we will get the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE