
The value of the integral $\int {{e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $is
$
{\text{a}}{\text{. }}{{\text{e}}^x}f'\left( x \right) + c \\
{\text{b}}{\text{. }}{{\text{e}}^x}f\left( x \right) + c{\text{ }} \\
{\text{c}}{\text{. }}\dfrac{{{e^x}}}{{f\left( x \right)}} + c \\
{\text{d}}{\text{. }}\dfrac{{{e^x}}}{{f'\left( x \right)}} + c \\
$
Answer
608.7k+ views
Hint: - Apply integration by parts method to reach the answer which is given as
$\int {\left( {{I_1}} \right)\left( {{I_2}} \right)dx = {I_1}} \int {\left( {{I_2}} \right)dx - \int {\left( {\left( {\dfrac{d}{{dx}}{I_1}} \right)\int {\left( {{I_2}} \right)dx} } \right)} } dx$
Given integral is
$I = \int {{e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $
Now break the integration into two parts
$ \Rightarrow I = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx + \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} } $
Let $I = {I_1} + {I_2}................................\left( 1 \right)$
First solve ${I_1}$
${I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} $
Now integrate it by parts where $f\left( x \right)$ is the first part and ${e^x}$ is the second part.
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = f\left( x \right)\int {{e^x}dx - \int {\left( {\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)\left( {\int {{e^x}dx} } \right)} \right)dx} } $
As we know$\int {{e^x}dx = {e^x},{\text{ }}} \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right)$, so apply this property
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c} $, (where c is some arbitrary integration constant)
From equation (1)
$
I = {I_1} + {I_2} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c + } \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} \\
\Rightarrow I = {e^x}f\left( x \right) + c \\
$
Hence, option (b) is correct.
Note: - In such types of questions always remember the key rule that first breaks the integration into parts, then integrate first integration by integration by parts method and leave the second integration as it is, after that it cancels out the second integration, doing this we will get the required answer.
$\int {\left( {{I_1}} \right)\left( {{I_2}} \right)dx = {I_1}} \int {\left( {{I_2}} \right)dx - \int {\left( {\left( {\dfrac{d}{{dx}}{I_1}} \right)\int {\left( {{I_2}} \right)dx} } \right)} } dx$
Given integral is
$I = \int {{e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $
Now break the integration into two parts
$ \Rightarrow I = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx + \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} } $
Let $I = {I_1} + {I_2}................................\left( 1 \right)$
First solve ${I_1}$
${I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} $
Now integrate it by parts where $f\left( x \right)$ is the first part and ${e^x}$ is the second part.
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = f\left( x \right)\int {{e^x}dx - \int {\left( {\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)\left( {\int {{e^x}dx} } \right)} \right)dx} } $
As we know$\int {{e^x}dx = {e^x},{\text{ }}} \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right)$, so apply this property
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c} $, (where c is some arbitrary integration constant)
From equation (1)
$
I = {I_1} + {I_2} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c + } \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} \\
\Rightarrow I = {e^x}f\left( x \right) + c \\
$
Hence, option (b) is correct.
Note: - In such types of questions always remember the key rule that first breaks the integration into parts, then integrate first integration by integration by parts method and leave the second integration as it is, after that it cancels out the second integration, doing this we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

