The value of the integral $\int {{e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $is
$
{\text{a}}{\text{. }}{{\text{e}}^x}f'\left( x \right) + c \\
{\text{b}}{\text{. }}{{\text{e}}^x}f\left( x \right) + c{\text{ }} \\
{\text{c}}{\text{. }}\dfrac{{{e^x}}}{{f\left( x \right)}} + c \\
{\text{d}}{\text{. }}\dfrac{{{e^x}}}{{f'\left( x \right)}} + c \\
$
Last updated date: 25th Mar 2023
•
Total views: 309.3k
•
Views today: 2.86k
Answer
309.3k+ views
Hint: - Apply integration by parts method to reach the answer which is given as
$\int {\left( {{I_1}} \right)\left( {{I_2}} \right)dx = {I_1}} \int {\left( {{I_2}} \right)dx - \int {\left( {\left( {\dfrac{d}{{dx}}{I_1}} \right)\int {\left( {{I_2}} \right)dx} } \right)} } dx$
Given integral is
$I = \int {{e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $
Now break the integration into two parts
$ \Rightarrow I = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx + \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} } $
Let $I = {I_1} + {I_2}................................\left( 1 \right)$
First solve ${I_1}$
${I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} $
Now integrate it by parts where $f\left( x \right)$ is the first part and ${e^x}$ is the second part.
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = f\left( x \right)\int {{e^x}dx - \int {\left( {\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)\left( {\int {{e^x}dx} } \right)} \right)dx} } $
As we know$\int {{e^x}dx = {e^x},{\text{ }}} \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right)$, so apply this property
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c} $, (where c is some arbitrary integration constant)
From equation (1)
$
I = {I_1} + {I_2} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c + } \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} \\
\Rightarrow I = {e^x}f\left( x \right) + c \\
$
Hence, option (b) is correct.
Note: - In such types of questions always remember the key rule that first breaks the integration into parts, then integrate first integration by integration by parts method and leave the second integration as it is, after that it cancels out the second integration, doing this we will get the required answer.
$\int {\left( {{I_1}} \right)\left( {{I_2}} \right)dx = {I_1}} \int {\left( {{I_2}} \right)dx - \int {\left( {\left( {\dfrac{d}{{dx}}{I_1}} \right)\int {\left( {{I_2}} \right)dx} } \right)} } dx$
Given integral is
$I = \int {{e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $
Now break the integration into two parts
$ \Rightarrow I = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx + \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} } $
Let $I = {I_1} + {I_2}................................\left( 1 \right)$
First solve ${I_1}$
${I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} $
Now integrate it by parts where $f\left( x \right)$ is the first part and ${e^x}$ is the second part.
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = f\left( x \right)\int {{e^x}dx - \int {\left( {\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)\left( {\int {{e^x}dx} } \right)} \right)dx} } $
As we know$\int {{e^x}dx = {e^x},{\text{ }}} \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right)$, so apply this property
$ \Rightarrow {I_1} = \int {{e^x}\left\{ {f\left( x \right)} \right\}dx} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c} $, (where c is some arbitrary integration constant)
From equation (1)
$
I = {I_1} + {I_2} = {e^x}f\left( x \right) - \int {{e^x}f'\left( x \right)dx + c + } \int {{e^x}\left\{ {f'\left( x \right)} \right\}dx} \\
\Rightarrow I = {e^x}f\left( x \right) + c \\
$
Hence, option (b) is correct.
Note: - In such types of questions always remember the key rule that first breaks the integration into parts, then integrate first integration by integration by parts method and leave the second integration as it is, after that it cancels out the second integration, doing this we will get the required answer.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
