
The value of $\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}$ is
$
{\text{a}}{\text{. n}} \\
{\text{b}}{\text{. }}\dfrac{{n + 1}}{2} \\
{\text{c}}{\text{. }}\dfrac{{n\left( {n + 1} \right)}}{2} \\
{\text{d}}{\text{. }}\dfrac{{n\left( {n - 1} \right)}}{2} \\
$
Answer
216.6k+ views
Hint: - Apply L’ Hospital’s Rule.
Given limit is
$\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}$
Put$\left( {x = 1} \right)$, in this limit
$ \Rightarrow \dfrac{{1 + 1 + 1 + .................. + 1 - n}}{{1 - 1}}$
As we know sum of 1 up to n terms is equal to n.
$ \Rightarrow \dfrac{{n - n}}{{1 - 1}} = \dfrac{0}{0}$
So, at\[x = 1\], the limit is in form of \[\dfrac{0}{0}\]
So, apply L’ Hospital’s rule
So, differentiate numerator and denominator separately w.r.t.$x$
As we know differentiation of\[{{\text{x}}^n} = n{x^{n - 1}}\], and differentiation of constant term is zero.
\[ \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{d}{{dx}}\left( {x + {x^2} + ...... + {x^n} - n} \right)}}{{\dfrac{d}{{dx}}\left( {x - 1} \right)}} \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{1 + 2x + 3{x^2} + ........ + n{x^{n - 1}} - 0}}{{1 - 0}}\]
Now, put\[x = 1\],\[ \Rightarrow \dfrac{{1 + 2 + 3 + ...................... + n}}{1}\]
\[ \Rightarrow 1 + 2 + 3 + ...................... + n = \sum\limits_{r = 1}^n r \]
Now as we know sum of first natural numbers is \[\left( {{\text{i}}{\text{.e}}{\text{.}}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}} \right)\]
\[\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}} = \sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Hence option (c) is the correct answer .
Note: - In such types of questions the key concept we have to remember is that, whenever the limit comes in the form of \[\dfrac{0}{0}\] always apply L’ hospital’s rule, (i.e. differentiate numerator and denominator separately), and always remember the sum of first natural numbers then we will get the required answer.
Given limit is
$\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}$
Put$\left( {x = 1} \right)$, in this limit
$ \Rightarrow \dfrac{{1 + 1 + 1 + .................. + 1 - n}}{{1 - 1}}$
As we know sum of 1 up to n terms is equal to n.
$ \Rightarrow \dfrac{{n - n}}{{1 - 1}} = \dfrac{0}{0}$
So, at\[x = 1\], the limit is in form of \[\dfrac{0}{0}\]
So, apply L’ Hospital’s rule
So, differentiate numerator and denominator separately w.r.t.$x$
As we know differentiation of\[{{\text{x}}^n} = n{x^{n - 1}}\], and differentiation of constant term is zero.
\[ \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{d}{{dx}}\left( {x + {x^2} + ...... + {x^n} - n} \right)}}{{\dfrac{d}{{dx}}\left( {x - 1} \right)}} \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{1 + 2x + 3{x^2} + ........ + n{x^{n - 1}} - 0}}{{1 - 0}}\]
Now, put\[x = 1\],\[ \Rightarrow \dfrac{{1 + 2 + 3 + ...................... + n}}{1}\]
\[ \Rightarrow 1 + 2 + 3 + ...................... + n = \sum\limits_{r = 1}^n r \]
Now as we know sum of first natural numbers is \[\left( {{\text{i}}{\text{.e}}{\text{.}}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}} \right)\]
\[\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}} = \sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Hence option (c) is the correct answer .
Note: - In such types of questions the key concept we have to remember is that, whenever the limit comes in the form of \[\dfrac{0}{0}\] always apply L’ hospital’s rule, (i.e. differentiate numerator and denominator separately), and always remember the sum of first natural numbers then we will get the required answer.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

