
The value of k when $f\left( x \right)=\dfrac{k}{\sqrt{x}},0 < x < 4$ is the pdf of RV $x$ is
(a) $-4$
(b) $-\dfrac{1}{4}$
(c) 4
(d) $\dfrac{1}{4}$
Answer
502.2k+ views
Hint: We know that the area under a probability density function is always equal to unity. Hence, we can integrate the given function over the given range and equate it to unity. We can solve this integration using the formula $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}$, and find the required value of k.
Complete step by step answer:
We know that the probability density function, also represented as a pdf, at any given space or point, gives the probability of the random variable to achieve that particular value in that space or point.
We also know that the area under the probability density function is equal to 1.
So, if the probability density function is represented as $f\left( x \right)$, where $x$ is the random variable, then we can say that the integration of $f\left( x \right)$ with respect to $x$ over the entire range, will be equal to unity.
We can write this mathematically as
$\int\limits_{-\infty }^{+\infty }{f\left( x \right)dx}=1$.
Here, in this question, the probability density function is defined as $f\left( x \right)=\dfrac{k}{\sqrt{x}}$ in the range $0 < x < 4$.
Hence, we can write
$\int\limits_{0}^{4}{\dfrac{k}{\sqrt{x}}dx}=1$.
We know that $\dfrac{1}{\sqrt{x}}$ can also be written as ${{x}^{-\dfrac{1}{2}}}$ . And since k is a constant, we can write the integral as
$k\int\limits_{0}^{4}{{{x}^{-\dfrac{1}{2}}}dx}=1$.
We know that $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}$.
So, by using this formula, we can write,
$k\left[ \dfrac{{{x}^{\dfrac{-1}{2}+1}}}{-\dfrac{1}{2}+1} \right]_{0}^{4}=1$.
On simplification, we can write
$k\left[ \dfrac{{{x}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \right]_{0}^{4}=1$.
We can also write this as
$2k\left[ {{x}^{\dfrac{1}{2}}} \right]_{0}^{4}=1$.
Or,
$2k\left[ \sqrt{x} \right]_{0}^{4}=1$.
On putting the values of $x$, we get
$2k\left[ \sqrt{4}-0 \right]=1$.
Thus, we have
$4k=1$.
Hence, we get $k=\dfrac{1}{4}$.
So, the correct answer is “Option d”.
Note: We can see that the probability density function is defined only for the range $0 < x < 4$, and this is why we have integrated the pdf in this range and not from $-\infty \text{ to }+\infty $. We must also not confuse thinking that pdf means probability distribution function.
Complete step by step answer:
We know that the probability density function, also represented as a pdf, at any given space or point, gives the probability of the random variable to achieve that particular value in that space or point.
We also know that the area under the probability density function is equal to 1.
So, if the probability density function is represented as $f\left( x \right)$, where $x$ is the random variable, then we can say that the integration of $f\left( x \right)$ with respect to $x$ over the entire range, will be equal to unity.
We can write this mathematically as
$\int\limits_{-\infty }^{+\infty }{f\left( x \right)dx}=1$.
Here, in this question, the probability density function is defined as $f\left( x \right)=\dfrac{k}{\sqrt{x}}$ in the range $0 < x < 4$.
Hence, we can write
$\int\limits_{0}^{4}{\dfrac{k}{\sqrt{x}}dx}=1$.
We know that $\dfrac{1}{\sqrt{x}}$ can also be written as ${{x}^{-\dfrac{1}{2}}}$ . And since k is a constant, we can write the integral as
$k\int\limits_{0}^{4}{{{x}^{-\dfrac{1}{2}}}dx}=1$.
We know that $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}$.
So, by using this formula, we can write,
$k\left[ \dfrac{{{x}^{\dfrac{-1}{2}+1}}}{-\dfrac{1}{2}+1} \right]_{0}^{4}=1$.
On simplification, we can write
$k\left[ \dfrac{{{x}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \right]_{0}^{4}=1$.
We can also write this as
$2k\left[ {{x}^{\dfrac{1}{2}}} \right]_{0}^{4}=1$.
Or,
$2k\left[ \sqrt{x} \right]_{0}^{4}=1$.
On putting the values of $x$, we get
$2k\left[ \sqrt{4}-0 \right]=1$.
Thus, we have
$4k=1$.
Hence, we get $k=\dfrac{1}{4}$.
So, the correct answer is “Option d”.
Note: We can see that the probability density function is defined only for the range $0 < x < 4$, and this is why we have integrated the pdf in this range and not from $-\infty \text{ to }+\infty $. We must also not confuse thinking that pdf means probability distribution function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

