Answer

Verified

402k+ views

**Hint:**Since it is a question of integration, so we will solve this question by looking at the factor with which integration part will be easy to solve for such type of integration we need to determine the result using the integration represented below, In simple words we will have to look in the integration part

\[\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} } \]

**Complete step by step answer:**

We have to find the value of $\int\limits_{\sqrt {\ln 2} }^{\sqrt {\ln 3} } {\dfrac{{x\sin {x^2}}}{{\sin {x^2} + \sin (\ln 6 - {x^2})}}dx} $

Let \[{x^2} = t\] in the given equation

\[\Rightarrow 2xdx = dt\]

Determining the value of $xdx$, we get

\[\Rightarrow xdx = \dfrac{1}{2}dt\]

Now, After putting the required value, we get

Let $I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin t}}{{\sin t + \sin (\ln 6 - t)}}dt} ….....(1)$

Now using the formula,

\[\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} } \]

On simplifying, we get

$\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 3 + \ln 2 - t]}}{{\sin (\ln 3 + \ln 2 - t) + \sin [\ln 6 - (\ln 3 + \ln 2 - t)]}}dt} $

Solving further

\[\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin [\ln 6 - \ln 6 + t]}}dt} \]

Hence, we get

\[\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin (t)}}dt} ...(2)\]

Now, adding (1) and (2), we get

$\Rightarrow 2I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin t}}{{\sin t + \sin (\ln 6 - t)}}dt} + \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin (t)}}dt} $

So, on simplifying the above equation, we get

\[ = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t] + \sin t}}{{\sin (\ln 6 - t) + \sin (t)}}dt} \]

Numerator and denominator will get cancel and we get

\[\Rightarrow I = \dfrac{1}{4}\int\limits_{\ln 2}^{\ln 3} {1.dt} \]

Integrating the above equation, we get

$ = \dfrac{1}{4}[t]_{\ln 2}^{\ln 3}$

Substituting the limit, we get

$ = \dfrac{1}{4}[\ln 3 - \ln 2]$

Now, we can simplify the above equation, by using the property of logarithm

$\Rightarrow \log a - \log b = \log \dfrac{a}{b}$

Hence, by using the above equation, we get

$\Rightarrow I = \dfrac{1}{4}\ln (\dfrac{3}{2})$

**$\therefore$ The value of $\int\limits_{\sqrt {\ln 2} }^{\sqrt {\ln 3} } {\dfrac{{x\sin {x^2}}}{{\sin {x^2} + \sin (\ln 6 - {x^2})}}dx} $ is $ I = \dfrac{1}{4}\ln (\dfrac{3}{2})$. Hence option (A) is correct.**

**Note:**

In this question, carefully solve the equation after using the formula \[\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b + x)dx} } \] and when adding both equations, don’t forget to add the left side also which will be 2I. Solve further to get the desired result.

Recently Updated Pages

Define the following A 1 volt PD B Electric power class 12 physics CBSE

In a halfwave rectifier the rms value of the ac component class 12 physics CBSE

When light travels from a rarer to a denser medium class 12 physics CBSE

The unit of electric dipole moment is A Newton B Coulomb class 12 physics CBSE

The waveforms A and B given below are given as input class 12 physics CBSE

What is the cause of Presbyopia class 12 physics CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Mention the different categories of ministers in the class 10 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Who is the executive head of the Municipal Corporation class 6 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Which monarch called himself as the second Alexander class 10 social science CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE