Answer
Verified
429.6k+ views
Hint: First assume the given integral as I. Now take $x=-t$ substitution. Find $dx$ , limits in terms of t. Substitute them all. Now try to find a relation between this new integral and I. By using this relation try to eliminate the exponential term. Now you have I as an integral of normal constants. Use basic integration properties to solve the I. Find the value of I (after integrating) by using general algebra. Use the following integral:
$\int{kdx=kx+c}$
Complete step by step answer:
Given integral in the question, which we need to solve:
$\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{1}{{{e}^{\sin x}}+1}dx}$.
Assume this integral as I, now I can be written as:
$I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{1}{{{e}^{\sin x}}+1}dx}$.………………………………..(i)
Now assume $x=-t$ . By differentiating this we get $dx=-dt$ .
Now limits $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ will be multiplied by $''-1''$ times that is $\left( \dfrac{\pi }{2},-\dfrac{\pi }{2} \right)$.
By substituting the above values into integration, we get:
\[\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{-\dfrac{\pi }{2}}{\dfrac{-dt}{{{e}^{-\sin t}}+1}}\]
By basic integration property, we can say the following:
$\Rightarrow \int\limits_{a}^{b}{-f\left( x \right)}dx=\int\limits_{b}^{a}{f\left( x \right)}dx$
By using this our integral becomes as it is given below:
$\Rightarrow I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{dt}{{{e}^{-\sin t}}+1}}$
By taking least common multiple in the denominator, we get:
$\Rightarrow I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{e}^{\sin t}}dt}{{{e}^{\sin t}}+1}}$
By substituting t as x using the dummy rule in above integral, we can write it as:
$\Rightarrow I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{e}^{\sin x}}dx}{{{e}^{\sin x}}+1}}$……….(ii)
Now, by adding equation (i) and equation (ii), we get it as
$\Rightarrow I+I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{dx}{{{e}^{\sin x}}+1}}+\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{e}^{\sin x}}dx}{{{e}^{\sin x}}+1}}$
By simplifying the above equation, we get it as:
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{e}^{\sin x}}+1}{{{e}^{\sin x}}+1}dx}$
By cancelling common terms in right hand side, we get:
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{dx}$
By basic knowledge of integration, we can say the formula:
$\Rightarrow \int{kdx=kx+c}$
By using the above formula, we can write equation:
$\Rightarrow 2I=\left[ x \right]_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}$
By substituting the limits, we can write it as:
$\Rightarrow 2I=\dfrac{\pi }{2}-\left( -\dfrac{\pi }{2} \right)=\pi $
By dividing with 2 on both sides of equation, we get:
$\dfrac{2I}{2}=\dfrac{\pi }{2}$
By simplifying it, finally we can say value of I to be:
$\therefore I=\dfrac{\pi }{2}$
Therefore, the value of the given integral is $\dfrac{\pi }{2}$ .
Option (d) is the correct answer for a given question.
Note:
The idea of seeing that if we substitute $-x$ the limits remain the same and we can cancel the exponential is very important. These kinds of tricks are very useful in integration. These tricks can be obtained only by lots of practice. Be careful while adding you must add LHS also generally students write I instead of 2I. Take the limits properly as the whole result depends on them.
$\int{kdx=kx+c}$
Complete step by step answer:
Given integral in the question, which we need to solve:
$\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{1}{{{e}^{\sin x}}+1}dx}$.
Assume this integral as I, now I can be written as:
$I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{1}{{{e}^{\sin x}}+1}dx}$.………………………………..(i)
Now assume $x=-t$ . By differentiating this we get $dx=-dt$ .
Now limits $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ will be multiplied by $''-1''$ times that is $\left( \dfrac{\pi }{2},-\dfrac{\pi }{2} \right)$.
By substituting the above values into integration, we get:
\[\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{-\dfrac{\pi }{2}}{\dfrac{-dt}{{{e}^{-\sin t}}+1}}\]
By basic integration property, we can say the following:
$\Rightarrow \int\limits_{a}^{b}{-f\left( x \right)}dx=\int\limits_{b}^{a}{f\left( x \right)}dx$
By using this our integral becomes as it is given below:
$\Rightarrow I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{dt}{{{e}^{-\sin t}}+1}}$
By taking least common multiple in the denominator, we get:
$\Rightarrow I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{e}^{\sin t}}dt}{{{e}^{\sin t}}+1}}$
By substituting t as x using the dummy rule in above integral, we can write it as:
$\Rightarrow I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{e}^{\sin x}}dx}{{{e}^{\sin x}}+1}}$……….(ii)
Now, by adding equation (i) and equation (ii), we get it as
$\Rightarrow I+I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{dx}{{{e}^{\sin x}}+1}}+\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{e}^{\sin x}}dx}{{{e}^{\sin x}}+1}}$
By simplifying the above equation, we get it as:
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{e}^{\sin x}}+1}{{{e}^{\sin x}}+1}dx}$
By cancelling common terms in right hand side, we get:
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{dx}$
By basic knowledge of integration, we can say the formula:
$\Rightarrow \int{kdx=kx+c}$
By using the above formula, we can write equation:
$\Rightarrow 2I=\left[ x \right]_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}$
By substituting the limits, we can write it as:
$\Rightarrow 2I=\dfrac{\pi }{2}-\left( -\dfrac{\pi }{2} \right)=\pi $
By dividing with 2 on both sides of equation, we get:
$\dfrac{2I}{2}=\dfrac{\pi }{2}$
By simplifying it, finally we can say value of I to be:
$\therefore I=\dfrac{\pi }{2}$
Therefore, the value of the given integral is $\dfrac{\pi }{2}$ .
Option (d) is the correct answer for a given question.
Note:
The idea of seeing that if we substitute $-x$ the limits remain the same and we can cancel the exponential is very important. These kinds of tricks are very useful in integration. These tricks can be obtained only by lots of practice. Be careful while adding you must add LHS also generally students write I instead of 2I. Take the limits properly as the whole result depends on them.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell