
The value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\], where a, b, c, k are constants, depends only on
(a) a, b and c
(b) k
(c) a and b
(d) a and k
Answer
607.2k+ views
Hint: Integrate the given function and substitute the given values in the indefinite integration of the function. Solve them and check the parameters on which the integration depends. Use the fact that the value of \[\int{a{{x}^{n}}dx}\] is \[\dfrac{a{{x}^{n+1}}}{n+1}\]. Another way to check the dependency of the integral on the parameters is by considering the fact that the integral of odd functions from ‘-a’ to ‘a’ is zero and those of even functions is positive.
Complete step-by-step answer:
We have to calculate the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\].
We will integrate the given function and substitute the given values and then simplify it to find the value of the integral.
We know that integration of sum of functions is equal to the sum of integration of each of the functions.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx.....\left( 1 \right)}\].
We also know that integration of function of the form \[a{{x}^{n}}\] is given by \[\int{a{{x}^{n}}dx}=\dfrac{a{{x}^{n+1}}}{n+1}\].
Thus, we have \[\int{a{{x}^{5}}dx}=\dfrac{a{{x}^{6}}}{6}\].
Similarly, we have \[\int{b{{x}^{3}}dx}=\dfrac{b{{x}^{4}}}{4}\].
We have \[\int{cxdx}=\dfrac{c{{x}^{2}}}{2}\] and \[\int{kdx=kx}\].
Substituting all the above integration in equation (1), we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}}\].
We will now substitute the values \[x=3\] and \[x=-3\] in the integration of the function.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}=\dfrac{a{{\left( 3 \right)}^{6}}}{6}+\dfrac{b{{\left( 3 \right)}^{4}}}{4}+\dfrac{c{{\left( 3 \right)}^{2}}}{2}+k\left( 3 \right)-\left[ \dfrac{a{{\left( -3 \right)}^{6}}}{6}+\dfrac{b{{\left( -3 \right)}^{4}}}{4}+\dfrac{c{{\left( -3 \right)}^{2}}}{2}+k\left( -3 \right) \right]\].
Further simplifying the equation, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( -3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( -3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( -3 \right)}^{2}} \right)+k\left( 3-\left( -3 \right) \right)\].
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( 3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( 3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( 3 \right)}^{2}} \right)+k\left( 3+3 \right)\].
So, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=0+k\left( 3+3 \right)=6k\].
Hence, the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\] depends only on k, which is option (b).
Note: It’s not necessary to solve the integral completely and evaluate its value. We can also use the fact that the value of integration of odd functions from ‘-a’ to ‘a’ is zero and those of even functions is positive. Polynomials of odd degree are odd functions. Thus, the value of integration of \[a{{x}^{5}}+b{{x}^{3}}+cx\] over the given range will be zero and non – zero for \[\int_{-3}^{3}{kdx}\]. Hence, the total value of integration will be dependent on k.
Complete step-by-step answer:
We have to calculate the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\].
We will integrate the given function and substitute the given values and then simplify it to find the value of the integral.
We know that integration of sum of functions is equal to the sum of integration of each of the functions.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx.....\left( 1 \right)}\].
We also know that integration of function of the form \[a{{x}^{n}}\] is given by \[\int{a{{x}^{n}}dx}=\dfrac{a{{x}^{n+1}}}{n+1}\].
Thus, we have \[\int{a{{x}^{5}}dx}=\dfrac{a{{x}^{6}}}{6}\].
Similarly, we have \[\int{b{{x}^{3}}dx}=\dfrac{b{{x}^{4}}}{4}\].
We have \[\int{cxdx}=\dfrac{c{{x}^{2}}}{2}\] and \[\int{kdx=kx}\].
Substituting all the above integration in equation (1), we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}}\].
We will now substitute the values \[x=3\] and \[x=-3\] in the integration of the function.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}=\dfrac{a{{\left( 3 \right)}^{6}}}{6}+\dfrac{b{{\left( 3 \right)}^{4}}}{4}+\dfrac{c{{\left( 3 \right)}^{2}}}{2}+k\left( 3 \right)-\left[ \dfrac{a{{\left( -3 \right)}^{6}}}{6}+\dfrac{b{{\left( -3 \right)}^{4}}}{4}+\dfrac{c{{\left( -3 \right)}^{2}}}{2}+k\left( -3 \right) \right]\].
Further simplifying the equation, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( -3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( -3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( -3 \right)}^{2}} \right)+k\left( 3-\left( -3 \right) \right)\].
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( 3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( 3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( 3 \right)}^{2}} \right)+k\left( 3+3 \right)\].
So, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=0+k\left( 3+3 \right)=6k\].
Hence, the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\] depends only on k, which is option (b).
Note: It’s not necessary to solve the integral completely and evaluate its value. We can also use the fact that the value of integration of odd functions from ‘-a’ to ‘a’ is zero and those of even functions is positive. Polynomials of odd degree are odd functions. Thus, the value of integration of \[a{{x}^{5}}+b{{x}^{3}}+cx\] over the given range will be zero and non – zero for \[\int_{-3}^{3}{kdx}\]. Hence, the total value of integration will be dependent on k.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

