The value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\], where a, b, c, k are constants, depends only on
(a) a, b and c
(b) k
(c) a and b
(d) a and k
Answer
361.8k+ views
Hint: Integrate the given function and substitute the given values in the indefinite integration of the function. Solve them and check the parameters on which the integration depends. Use the fact that the value of \[\int{a{{x}^{n}}dx}\] is \[\dfrac{a{{x}^{n+1}}}{n+1}\]. Another way to check the dependency of the integral on the parameters is by considering the fact that the integral of odd functions from ‘-a’ to ‘a’ is zero and those of even functions is positive.
Complete step-by-step answer:
We have to calculate the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\].
We will integrate the given function and substitute the given values and then simplify it to find the value of the integral.
We know that integration of sum of functions is equal to the sum of integration of each of the functions.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx.....\left( 1 \right)}\].
We also know that integration of function of the form \[a{{x}^{n}}\] is given by \[\int{a{{x}^{n}}dx}=\dfrac{a{{x}^{n+1}}}{n+1}\].
Thus, we have \[\int{a{{x}^{5}}dx}=\dfrac{a{{x}^{6}}}{6}\].
Similarly, we have \[\int{b{{x}^{3}}dx}=\dfrac{b{{x}^{4}}}{4}\].
We have \[\int{cxdx}=\dfrac{c{{x}^{2}}}{2}\] and \[\int{kdx=kx}\].
Substituting all the above integration in equation (1), we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}}\].
We will now substitute the values \[x=3\] and \[x=-3\] in the integration of the function.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}=\dfrac{a{{\left( 3 \right)}^{6}}}{6}+\dfrac{b{{\left( 3 \right)}^{4}}}{4}+\dfrac{c{{\left( 3 \right)}^{2}}}{2}+k\left( 3 \right)-\left[ \dfrac{a{{\left( -3 \right)}^{6}}}{6}+\dfrac{b{{\left( -3 \right)}^{4}}}{4}+\dfrac{c{{\left( -3 \right)}^{2}}}{2}+k\left( -3 \right) \right]\].
Further simplifying the equation, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( -3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( -3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( -3 \right)}^{2}} \right)+k\left( 3-\left( -3 \right) \right)\].
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( 3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( 3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( 3 \right)}^{2}} \right)+k\left( 3+3 \right)\].
So, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=0+k\left( 3+3 \right)=6k\].
Hence, the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\] depends only on k, which is option (b).
Note: It’s not necessary to solve the integral completely and evaluate its value. We can also use the fact that the value of integration of odd functions from ‘-a’ to ‘a’ is zero and those of even functions is positive. Polynomials of odd degree are odd functions. Thus, the value of integration of \[a{{x}^{5}}+b{{x}^{3}}+cx\] over the given range will be zero and non – zero for \[\int_{-3}^{3}{kdx}\]. Hence, the total value of integration will be dependent on k.
Complete step-by-step answer:
We have to calculate the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\].
We will integrate the given function and substitute the given values and then simplify it to find the value of the integral.
We know that integration of sum of functions is equal to the sum of integration of each of the functions.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx.....\left( 1 \right)}\].
We also know that integration of function of the form \[a{{x}^{n}}\] is given by \[\int{a{{x}^{n}}dx}=\dfrac{a{{x}^{n+1}}}{n+1}\].
Thus, we have \[\int{a{{x}^{5}}dx}=\dfrac{a{{x}^{6}}}{6}\].
Similarly, we have \[\int{b{{x}^{3}}dx}=\dfrac{b{{x}^{4}}}{4}\].
We have \[\int{cxdx}=\dfrac{c{{x}^{2}}}{2}\] and \[\int{kdx=kx}\].
Substituting all the above integration in equation (1), we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}}\].
We will now substitute the values \[x=3\] and \[x=-3\] in the integration of the function.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}=\dfrac{a{{\left( 3 \right)}^{6}}}{6}+\dfrac{b{{\left( 3 \right)}^{4}}}{4}+\dfrac{c{{\left( 3 \right)}^{2}}}{2}+k\left( 3 \right)-\left[ \dfrac{a{{\left( -3 \right)}^{6}}}{6}+\dfrac{b{{\left( -3 \right)}^{4}}}{4}+\dfrac{c{{\left( -3 \right)}^{2}}}{2}+k\left( -3 \right) \right]\].
Further simplifying the equation, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( -3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( -3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( -3 \right)}^{2}} \right)+k\left( 3-\left( -3 \right) \right)\].
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( 3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( 3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( 3 \right)}^{2}} \right)+k\left( 3+3 \right)\].
So, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=0+k\left( 3+3 \right)=6k\].
Hence, the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\] depends only on k, which is option (b).
Note: It’s not necessary to solve the integral completely and evaluate its value. We can also use the fact that the value of integration of odd functions from ‘-a’ to ‘a’ is zero and those of even functions is positive. Polynomials of odd degree are odd functions. Thus, the value of integration of \[a{{x}^{5}}+b{{x}^{3}}+cx\] over the given range will be zero and non – zero for \[\int_{-3}^{3}{kdx}\]. Hence, the total value of integration will be dependent on k.
Last updated date: 29th Sep 2023
•
Total views: 361.8k
•
Views today: 3.61k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE
