The value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\], where a, b, c, k are constants, depends only on
(a) a, b and c
(b) k
(c) a and b
(d) a and k
Last updated date: 22nd Mar 2023
•
Total views: 304.5k
•
Views today: 3.84k
Answer
304.5k+ views
Hint: Integrate the given function and substitute the given values in the indefinite integration of the function. Solve them and check the parameters on which the integration depends. Use the fact that the value of \[\int{a{{x}^{n}}dx}\] is \[\dfrac{a{{x}^{n+1}}}{n+1}\]. Another way to check the dependency of the integral on the parameters is by considering the fact that the integral of odd functions from ‘-a’ to ‘a’ is zero and those of even functions is positive.
Complete step-by-step answer:
We have to calculate the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\].
We will integrate the given function and substitute the given values and then simplify it to find the value of the integral.
We know that integration of sum of functions is equal to the sum of integration of each of the functions.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx.....\left( 1 \right)}\].
We also know that integration of function of the form \[a{{x}^{n}}\] is given by \[\int{a{{x}^{n}}dx}=\dfrac{a{{x}^{n+1}}}{n+1}\].
Thus, we have \[\int{a{{x}^{5}}dx}=\dfrac{a{{x}^{6}}}{6}\].
Similarly, we have \[\int{b{{x}^{3}}dx}=\dfrac{b{{x}^{4}}}{4}\].
We have \[\int{cxdx}=\dfrac{c{{x}^{2}}}{2}\] and \[\int{kdx=kx}\].
Substituting all the above integration in equation (1), we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}}\].
We will now substitute the values \[x=3\] and \[x=-3\] in the integration of the function.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}=\dfrac{a{{\left( 3 \right)}^{6}}}{6}+\dfrac{b{{\left( 3 \right)}^{4}}}{4}+\dfrac{c{{\left( 3 \right)}^{2}}}{2}+k\left( 3 \right)-\left[ \dfrac{a{{\left( -3 \right)}^{6}}}{6}+\dfrac{b{{\left( -3 \right)}^{4}}}{4}+\dfrac{c{{\left( -3 \right)}^{2}}}{2}+k\left( -3 \right) \right]\].
Further simplifying the equation, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( -3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( -3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( -3 \right)}^{2}} \right)+k\left( 3-\left( -3 \right) \right)\].
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( 3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( 3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( 3 \right)}^{2}} \right)+k\left( 3+3 \right)\].
So, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=0+k\left( 3+3 \right)=6k\].
Hence, the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\] depends only on k, which is option (b).
Note: It’s not necessary to solve the integral completely and evaluate its value. We can also use the fact that the value of integration of odd functions from ‘-a’ to ‘a’ is zero and those of even functions is positive. Polynomials of odd degree are odd functions. Thus, the value of integration of \[a{{x}^{5}}+b{{x}^{3}}+cx\] over the given range will be zero and non – zero for \[\int_{-3}^{3}{kdx}\]. Hence, the total value of integration will be dependent on k.
Complete step-by-step answer:
We have to calculate the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\].
We will integrate the given function and substitute the given values and then simplify it to find the value of the integral.
We know that integration of sum of functions is equal to the sum of integration of each of the functions.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx.....\left( 1 \right)}\].
We also know that integration of function of the form \[a{{x}^{n}}\] is given by \[\int{a{{x}^{n}}dx}=\dfrac{a{{x}^{n+1}}}{n+1}\].
Thus, we have \[\int{a{{x}^{5}}dx}=\dfrac{a{{x}^{6}}}{6}\].
Similarly, we have \[\int{b{{x}^{3}}dx}=\dfrac{b{{x}^{4}}}{4}\].
We have \[\int{cxdx}=\dfrac{c{{x}^{2}}}{2}\] and \[\int{kdx=kx}\].
Substituting all the above integration in equation (1), we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\int_{-3}^{3}{a{{x}^{5}}dx}+\int_{-3}^{3}{b{{x}^{3}}dx}+\int_{-3}^{3}{cxdx}+\int_{-3}^{3}{kdx=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}}\].
We will now substitute the values \[x=3\] and \[x=-3\] in the integration of the function.
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\left[ \dfrac{a{{x}^{6}}}{6}+\dfrac{b{{x}^{4}}}{4}+\dfrac{c{{x}^{2}}}{2}+kx \right]_{x=-3}^{x=3}=\dfrac{a{{\left( 3 \right)}^{6}}}{6}+\dfrac{b{{\left( 3 \right)}^{4}}}{4}+\dfrac{c{{\left( 3 \right)}^{2}}}{2}+k\left( 3 \right)-\left[ \dfrac{a{{\left( -3 \right)}^{6}}}{6}+\dfrac{b{{\left( -3 \right)}^{4}}}{4}+\dfrac{c{{\left( -3 \right)}^{2}}}{2}+k\left( -3 \right) \right]\].
Further simplifying the equation, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( -3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( -3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( -3 \right)}^{2}} \right)+k\left( 3-\left( -3 \right) \right)\].
Thus, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=\dfrac{a}{6}\left( {{3}^{6}}-{{\left( 3 \right)}^{6}} \right)+\dfrac{b}{4}\left( {{3}^{4}}-{{\left( 3 \right)}^{4}} \right)+\dfrac{c}{2}\left( {{3}^{2}}-{{\left( 3 \right)}^{2}} \right)+k\left( 3+3 \right)\].
So, we have \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}=0+k\left( 3+3 \right)=6k\].
Hence, the value of \[\int_{-3}^{3}{\left( a{{x}^{5}}+b{{x}^{3}}+cx+k \right)dx}\] depends only on k, which is option (b).
Note: It’s not necessary to solve the integral completely and evaluate its value. We can also use the fact that the value of integration of odd functions from ‘-a’ to ‘a’ is zero and those of even functions is positive. Polynomials of odd degree are odd functions. Thus, the value of integration of \[a{{x}^{5}}+b{{x}^{3}}+cx\] over the given range will be zero and non – zero for \[\int_{-3}^{3}{kdx}\]. Hence, the total value of integration will be dependent on k.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
