Answer
Verified
455.1k+ views
Hint: First multiply numerator and denominator by \[{{\text{x}}^{{\text{n - 1}}}}\]and assume \[{{\text{x}}^{\text{n}}}{\text{ = t}}\] and simplifying the problem. Then the integration will turn out to be a easier fraction to deal with.
Complete step by step solution: Given,
\[\int {\dfrac{{{\text{dx}}}}{{{\text{x(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]
On Multiplying denominator and numerator by \[{{\text{x}}^{{\text{n - 1}}}}\],
\[ = \int {\dfrac{{{{\text{x}}^{{\text{n - 1}}}}{\text{dx}}}}{{{{\text{x}}^{\text{n}}}{\text{(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]
Now, let, \[{{\text{x}}^{\text{n}}}{\text{ = t}}\]
\[ \Rightarrow {{\text{x}}^{{\text{n - 1}}}}{\text{dx = }}\dfrac{{{\text{dt}}}}{{\text{n}}}\],
So we get,
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{n}}}\int {\dfrac{{{\text{dt}}}}{{{\text{t(t + 1)}}}}} \]………(1)
Now, we use the form of partial fractions to find the integral,
\[
\dfrac{1}{{t(t + 1)}} = \dfrac{A}{t} + \dfrac{B}{{t + 1}} \\
\Rightarrow \dfrac{1}{{t(t + 1)}} = \dfrac{{A(t + 1) + Bt}}{{t(t + 1)}} \\
\]
So,
\[A(t + 1) + Bt\]= 1
If we take, \[t = 0\] then,
\[A(0 + 1) + B.0 = 1\] gives us \[A = 1\]
And also for , \[t = - 1\]
\[A( - 1 + 1) + B. - 1 = 1\] gives us \[B = - 1\]
Now equation 1 can be written as,
\[ = \dfrac{1}{n}[\int {(\dfrac{1}{t} - \dfrac{1}{{t + 1}})dt} \]
If we integrate now, we have, as integral of \[\dfrac{1}{t}\] is \[\log t\],
\[ \Rightarrow \dfrac{1}{n}[\log t - \log (t + 1)]\]
Now, also,
`\[\log a - \log b = \log \dfrac{a}{b}\]
\[ \Rightarrow \dfrac{1}{n}[\log (\dfrac{t}{{t + 1}})]\]
Putting the value of t we have,
\[ = \dfrac{1}{n}[\log (\dfrac{{{x^n}}}{{{x^n} + 1}})]\]
So, we get, \[\int {\dfrac{{{\text{dx}}}}{{{\text{x(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]\[ = \dfrac{1}{n}[\log (\dfrac{{{x^n}}}{{{x^n} + 1}})]+C\]
Note: \[\dfrac{1}{{t(t + 1)}}\]can be directly written as sum of two fractions \[\dfrac{1}{t}, - \dfrac{1}{{t + 1}}\]as \[\dfrac{1}{{t(t + 1)}} = \dfrac{1}{t} - \dfrac{1}{{t + 1}}\]. We can also do this integration in another way by multiplying the denominator and numerator by \[{x^n} - 1\].
Complete step by step solution: Given,
\[\int {\dfrac{{{\text{dx}}}}{{{\text{x(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]
On Multiplying denominator and numerator by \[{{\text{x}}^{{\text{n - 1}}}}\],
\[ = \int {\dfrac{{{{\text{x}}^{{\text{n - 1}}}}{\text{dx}}}}{{{{\text{x}}^{\text{n}}}{\text{(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]
Now, let, \[{{\text{x}}^{\text{n}}}{\text{ = t}}\]
\[ \Rightarrow {{\text{x}}^{{\text{n - 1}}}}{\text{dx = }}\dfrac{{{\text{dt}}}}{{\text{n}}}\],
So we get,
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{n}}}\int {\dfrac{{{\text{dt}}}}{{{\text{t(t + 1)}}}}} \]………(1)
Now, we use the form of partial fractions to find the integral,
\[
\dfrac{1}{{t(t + 1)}} = \dfrac{A}{t} + \dfrac{B}{{t + 1}} \\
\Rightarrow \dfrac{1}{{t(t + 1)}} = \dfrac{{A(t + 1) + Bt}}{{t(t + 1)}} \\
\]
So,
\[A(t + 1) + Bt\]= 1
If we take, \[t = 0\] then,
\[A(0 + 1) + B.0 = 1\] gives us \[A = 1\]
And also for , \[t = - 1\]
\[A( - 1 + 1) + B. - 1 = 1\] gives us \[B = - 1\]
Now equation 1 can be written as,
\[ = \dfrac{1}{n}[\int {(\dfrac{1}{t} - \dfrac{1}{{t + 1}})dt} \]
If we integrate now, we have, as integral of \[\dfrac{1}{t}\] is \[\log t\],
\[ \Rightarrow \dfrac{1}{n}[\log t - \log (t + 1)]\]
Now, also,
`\[\log a - \log b = \log \dfrac{a}{b}\]
\[ \Rightarrow \dfrac{1}{n}[\log (\dfrac{t}{{t + 1}})]\]
Putting the value of t we have,
\[ = \dfrac{1}{n}[\log (\dfrac{{{x^n}}}{{{x^n} + 1}})]\]
So, we get, \[\int {\dfrac{{{\text{dx}}}}{{{\text{x(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]\[ = \dfrac{1}{n}[\log (\dfrac{{{x^n}}}{{{x^n} + 1}})]+C\]
Note: \[\dfrac{1}{{t(t + 1)}}\]can be directly written as sum of two fractions \[\dfrac{1}{t}, - \dfrac{1}{{t + 1}}\]as \[\dfrac{1}{{t(t + 1)}} = \dfrac{1}{t} - \dfrac{1}{{t + 1}}\]. We can also do this integration in another way by multiplying the denominator and numerator by \[{x^n} - 1\].
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The largest tea producing country in the world is A class 10 social science CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE