The value of $f\left( x \right) = {x^x}$ has stationary point at?
$
a.{\text{ }}x = e \\
b.{\text{ }}x = \dfrac{1}{e} \\
c.{\text{ }}x = 1 \\
d.{\text{ }}x = \sqrt e \\
$
Answer
Verified
506.7k+ views
Hint: - Use $\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = 0$, to find out the stationary point.
To find out the stationary point differentiate the given function w.r.t the given variable and put that to zero.
$\therefore \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = 0$
So first simplify the function take log on both sides
$\therefore \log f\left( x \right) = \log {x^x}$
As we know $\log {a^b} = b\log a$ so, apply this property of logarithmic
$\therefore \log f\left( x \right) = x\log x$
Now differentiate above equation w.r.t.$x$
As we know differentiation of$\dfrac{d}{{dx}}\log f\left( x \right) = \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)$, and in $x\log x$we use chain rule of differentiation.
$
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{d}{{dx}}x\log x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{x}{x} + \log x\left( 1 \right) \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = 1 + \log x \\
\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = f\left( x \right)\left( {1 + \log x} \right) \\
$
Now substitute the value of $f\left( x \right) = {x^x}$in the above equation
$\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = {x^x}\left( {1 + \log x} \right)$
Now according to stationary point condition equate this value to zero.
$
\therefore {x^x}\left( {1 + \log x} \right) = 0 \\
\therefore \left( {1 + \log x} \right) = 0 \\
\therefore \log x = - 1 \\
$
Now take antilog
$\therefore x = {e^{ - 1}} = \dfrac{1}{e}$
So, the stationary point of the function $f\left( x \right) = {x^x}$is at $x = \dfrac{1}{e}$
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember the condition of stationary point which is stated above, so differentiate the following function w.r.t. $x$ and equate the value to zero, then solve for $x$, which is the required stationary point.
To find out the stationary point differentiate the given function w.r.t the given variable and put that to zero.
$\therefore \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = 0$
So first simplify the function take log on both sides
$\therefore \log f\left( x \right) = \log {x^x}$
As we know $\log {a^b} = b\log a$ so, apply this property of logarithmic
$\therefore \log f\left( x \right) = x\log x$
Now differentiate above equation w.r.t.$x$
As we know differentiation of$\dfrac{d}{{dx}}\log f\left( x \right) = \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)$, and in $x\log x$we use chain rule of differentiation.
$
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{d}{{dx}}x\log x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{x}{x} + \log x\left( 1 \right) \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = 1 + \log x \\
\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = f\left( x \right)\left( {1 + \log x} \right) \\
$
Now substitute the value of $f\left( x \right) = {x^x}$in the above equation
$\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = {x^x}\left( {1 + \log x} \right)$
Now according to stationary point condition equate this value to zero.
$
\therefore {x^x}\left( {1 + \log x} \right) = 0 \\
\therefore \left( {1 + \log x} \right) = 0 \\
\therefore \log x = - 1 \\
$
Now take antilog
$\therefore x = {e^{ - 1}} = \dfrac{1}{e}$
So, the stationary point of the function $f\left( x \right) = {x^x}$is at $x = \dfrac{1}{e}$
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember the condition of stationary point which is stated above, so differentiate the following function w.r.t. $x$ and equate the value to zero, then solve for $x$, which is the required stationary point.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE