
The value of \[\dfrac{{5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} }}{{\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} }}\] is
A.5040
B.5051
C.5050
D.None of these
Answer
570.3k+ views
Hint: First we will assume that \[{I_1} = \int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} \] and \[{I_2} = \int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} \]. Then we will apply integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[{I_2}\] of the above equation, where \[f = {\left( {1 - {x^{50}}} \right)^{101}}\] and \[g' = 1\]. Then we will simplify to find the required value.
Complete step-by-step answer:
We are given that \[\dfrac{{5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} }}{{\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} }}\].
Let us assume that \[{I_1} = \int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} \] and \[{I_2} = \int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} \].
So, we have
\[ \Rightarrow \dfrac{{5050{I_1}}}{{{I_2}}}{\text{ ......eq.(1)}}\]
Within the above difference, applying integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[{I_2}\] of the above equation, where \[f = {\left( {1 - {x^{50}}} \right)^{101}}\] and \[g' = 1\], we get
\[
\Rightarrow {I_2} = \left. {{{\left( {1 - {x^{50}}} \right)}^{101}}x} \right|_0^1 - \int\limits_0^1 {\left( {101} \right){{\left( {1 - {x^{50}}} \right)}^{100}}50 \cdot {x^{49}} \cdot xdx} \\
\Rightarrow {I_2} = \left. {{{\left( {1 - {x^{50}}} \right)}^{101}}x} \right|_0^1 - 50\left( {101} \right)\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}{x^{50}}dx} \\
\Rightarrow {I_2} = \left( {1 - {1^{50}}} \right) \cdot 1 - \left( {1 - {0^{50}}} \right) \cdot 0 - 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}{x^{50}}dx} \\
\Rightarrow {I_2} = \left( {1 - 1} \right) - \left( {1 - 0} \right) \cdot 0 - 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}{x^{50}}dx} \\
\Rightarrow {I_2} = 0 - 0 - 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} + 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} \\
\Rightarrow {I_2} = - 5050{I_2} + 5050{I_1} \\
\]
Adding \[5050{I_2}\] in the above equation on both sides, we get
\[
\Rightarrow {I_2} + 5050{I_2} = - 5050{I_2} + 5050{I_1} + 5050{I_2} \\
\Rightarrow {I_2} + 5050{I_2} = 5050{I_1} \\
\Rightarrow 5051{I_2} = 5050{I_1} \\
\]
Dividing the above equation by \[{I_2}\] on both sides, we get
\[
\Rightarrow \dfrac{{5051{I_2}}}{{{I_2}}} = \dfrac{{5050{I_1}}}{{{I_2}}} \\
\Rightarrow 5051 = \dfrac{{5050{I_1}}}{{{I_2}}} \\
\Rightarrow \dfrac{{5050{I_1}}}{{{I_2}}} = 5051 \\
\]
Hence, option B is correct.
Note: We need to know that while finding the value of indefinite integral, we have to add the constant in the final answer or else the answer will be incomplete. We have to be really thorough with the integrations and differentiation of the functions. The key point in this question is to use the integration by parts \[\int {fg'} = fg - \int {f'g} \] to solve this problem. Do not forget that many integrals can be evaluated in multiple ways and so more than one technique may be used on it, but this problem can only be solved by parts.
Complete step-by-step answer:
We are given that \[\dfrac{{5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} }}{{\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} }}\].
Let us assume that \[{I_1} = \int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} \] and \[{I_2} = \int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} \].
So, we have
\[ \Rightarrow \dfrac{{5050{I_1}}}{{{I_2}}}{\text{ ......eq.(1)}}\]
Within the above difference, applying integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[{I_2}\] of the above equation, where \[f = {\left( {1 - {x^{50}}} \right)^{101}}\] and \[g' = 1\], we get
\[
\Rightarrow {I_2} = \left. {{{\left( {1 - {x^{50}}} \right)}^{101}}x} \right|_0^1 - \int\limits_0^1 {\left( {101} \right){{\left( {1 - {x^{50}}} \right)}^{100}}50 \cdot {x^{49}} \cdot xdx} \\
\Rightarrow {I_2} = \left. {{{\left( {1 - {x^{50}}} \right)}^{101}}x} \right|_0^1 - 50\left( {101} \right)\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}{x^{50}}dx} \\
\Rightarrow {I_2} = \left( {1 - {1^{50}}} \right) \cdot 1 - \left( {1 - {0^{50}}} \right) \cdot 0 - 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}{x^{50}}dx} \\
\Rightarrow {I_2} = \left( {1 - 1} \right) - \left( {1 - 0} \right) \cdot 0 - 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}{x^{50}}dx} \\
\Rightarrow {I_2} = 0 - 0 - 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} + 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} \\
\Rightarrow {I_2} = - 5050{I_2} + 5050{I_1} \\
\]
Adding \[5050{I_2}\] in the above equation on both sides, we get
\[
\Rightarrow {I_2} + 5050{I_2} = - 5050{I_2} + 5050{I_1} + 5050{I_2} \\
\Rightarrow {I_2} + 5050{I_2} = 5050{I_1} \\
\Rightarrow 5051{I_2} = 5050{I_1} \\
\]
Dividing the above equation by \[{I_2}\] on both sides, we get
\[
\Rightarrow \dfrac{{5051{I_2}}}{{{I_2}}} = \dfrac{{5050{I_1}}}{{{I_2}}} \\
\Rightarrow 5051 = \dfrac{{5050{I_1}}}{{{I_2}}} \\
\Rightarrow \dfrac{{5050{I_1}}}{{{I_2}}} = 5051 \\
\]
Hence, option B is correct.
Note: We need to know that while finding the value of indefinite integral, we have to add the constant in the final answer or else the answer will be incomplete. We have to be really thorough with the integrations and differentiation of the functions. The key point in this question is to use the integration by parts \[\int {fg'} = fg - \int {f'g} \] to solve this problem. Do not forget that many integrals can be evaluated in multiple ways and so more than one technique may be used on it, but this problem can only be solved by parts.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

How is democracy better than other forms of government class 12 social science CBSE

