Answer
Verified
438.3k+ views
Hint: We start solving the problem by recalling the principal value or range of the inverse cosine function ${{\cos }^{-1}}\left( x \right)$. We then find the value of the $\cos \left( \dfrac{7\pi }{6} \right)$ using the fact that $\cos \left( \pi +\theta \right)=-\cos \theta $ and substitute it in the given ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$. We then follow the range of inverse cosine function ${{\cos }^{-1}}\left( x \right)$ to find the value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$.
Complete step by step answer:
According to the problem, we need to find the value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$.
We know that the function ${{\cos }^{-1}}\left( x \right)$ has principal value or the range of ${{\cos }^{-1}}\left( x \right)$ is restricted between 0 and $\pi $. This means that ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ has value between 0 and $\pi $ -(1).
Let us solve for the value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$.
Now let us find the value of $\cos \left( \dfrac{7\pi }{6} \right)$. We know that $\cos \left( \pi +\theta \right)=-\cos \theta $.
$\Rightarrow \cos \left( \dfrac{7\pi }{6} \right)=\cos \left( \pi +\dfrac{\pi }{6} \right)$.
$\Rightarrow \cos \left( \dfrac{7\pi }{6} \right)=-\cos \left( \dfrac{\pi }{6} \right)$.
$\Rightarrow \cos \left( \dfrac{7\pi }{6} \right)=\dfrac{-\sqrt{3}}{2}$.
So, we have got ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)={{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)$.
We know that ${{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)=\dfrac{5\pi }{6}$, following the definition of the principal value of ${{\cos }^{-1}}\left( x \right)$ as mentioned in equation (1).
So, we get ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6}$.
We have found the value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ as $\dfrac{5\pi }{6}$.
So, the correct answer is “Option b”.
Note: We should not directly say the value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ as $\dfrac{7\pi }{6}$. This is because of the fact that the value $\dfrac{7\pi }{6}$ is not in the principal value of the function ${{\cos }^{-1}}\left( x \right)$. Whenever we get this type of problem, we should answer it in between principal values. If it is specified that the values outside the principal range are also allowed, then we can say all the possible answers. We don’t need to remember the hectic formulas related to inverse trigonometric functions while solving this type of problems.
Complete step by step answer:
According to the problem, we need to find the value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$.
We know that the function ${{\cos }^{-1}}\left( x \right)$ has principal value or the range of ${{\cos }^{-1}}\left( x \right)$ is restricted between 0 and $\pi $. This means that ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ has value between 0 and $\pi $ -(1).
Let us solve for the value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$.
Now let us find the value of $\cos \left( \dfrac{7\pi }{6} \right)$. We know that $\cos \left( \pi +\theta \right)=-\cos \theta $.
$\Rightarrow \cos \left( \dfrac{7\pi }{6} \right)=\cos \left( \pi +\dfrac{\pi }{6} \right)$.
$\Rightarrow \cos \left( \dfrac{7\pi }{6} \right)=-\cos \left( \dfrac{\pi }{6} \right)$.
$\Rightarrow \cos \left( \dfrac{7\pi }{6} \right)=\dfrac{-\sqrt{3}}{2}$.
So, we have got ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)={{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)$.
We know that ${{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)=\dfrac{5\pi }{6}$, following the definition of the principal value of ${{\cos }^{-1}}\left( x \right)$ as mentioned in equation (1).
So, we get ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6}$.
We have found the value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ as $\dfrac{5\pi }{6}$.
So, the correct answer is “Option b”.
Note: We should not directly say the value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ as $\dfrac{7\pi }{6}$. This is because of the fact that the value $\dfrac{7\pi }{6}$ is not in the principal value of the function ${{\cos }^{-1}}\left( x \right)$. Whenever we get this type of problem, we should answer it in between principal values. If it is specified that the values outside the principal range are also allowed, then we can say all the possible answers. We don’t need to remember the hectic formulas related to inverse trigonometric functions while solving this type of problems.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE