# The value of ${{\cos }^{-1}}\left\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\}$ is equal to

(a) $\sqrt{2}-1$

(b) $\dfrac{\pi }{4}$

(c) $\dfrac{3\pi }{4}$

(d) $0$

Answer

Verified

364.5k+ views

Hint: In inverse trigonometric functions, we have a formula ${{\cos }^{-1}}\left( \cos x \right)=x$ if $x$ is a principle angle i.e. $x\in \left[ 0,\pi \right]$. In this question, we will start from the innermost term and convert them to $\cos $ or ${{\cos }^{-1}}$ functions and then use the above formula.

Before proceeding with the question, we must know all the formulas that will be required to solve this question.

In the inverse trigonometric functions, we have the following formulas,

$\left( 1 \right){{\cos }^{-1}}\left( \cos x \right)=x$

$\left( 2 \right){{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$

$\left( 3 \right)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$

In the question, we are required to solve ${{\cos }^{-1}}\left\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\}$. To solve this, we will start from the innermost function and apply the above listed formulas till we reach the outermost function. We will convert all the functions in the form of $\cos $ or ${{\cos }^{-1}}$ with the use of the above listed formulas since the outermost function is a ${{\cos }^{-1}}$ function.

The innermost function is $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$. Using formula $\left( 2 \right)$, we get $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$ equal to,

$2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}$

Using formula $\left( 3 \right)$, we can write \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}\] as,

\[\begin{align}

& 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{1-{{\left( \dfrac{1}{\sqrt{2}-1} \right)}^{2}}} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\left( \dfrac{2+1-2\sqrt{2}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}} \right)} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\left( \dfrac{3-2\sqrt{2}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}} \right)} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{2-2\sqrt{2}}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{-2\left( \sqrt{2}-1 \right)}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( -1 \right) \\

\end{align}\]

From inverse trigonometric functions, we have ${{\tan }^{-1}}\left( -1 \right)=\dfrac{3\pi }{4}$. Hence, we can say from the above equation that \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}=\dfrac{3\pi }{4}\]. Since we had simplified $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$ to \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}\], so finally, we can say that \[2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{4}\].

Since we got \[2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{4}\], substituting this in the expression given in the question i.e. ${{\cos }^{-1}}\left\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\}$, we get ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}$ .

The angle inside the ${{\cos }^{-1}}\cos $ function is a primary angle since it is less that $\pi $ and greater than $0$. So, we can apply formula $\left( 1 \right)$ to ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}$.

Using formula $\left( 1 \right)$, we get ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}=\dfrac{3\pi }{4}$.

Hence, the answer is option (c).

Note: One must know that the formula ${{\cos }^{-1}}\left( \cos x \right)=x$is valid only when $x$ is a primary angle i.e. $x\in \left[ 0,\pi \right]$. One cannot use this formula if $x$ is not a primary angle i.e. $x\notin \left[ 0,\pi \right]$.

Before proceeding with the question, we must know all the formulas that will be required to solve this question.

In the inverse trigonometric functions, we have the following formulas,

$\left( 1 \right){{\cos }^{-1}}\left( \cos x \right)=x$

$\left( 2 \right){{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$

$\left( 3 \right)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$

In the question, we are required to solve ${{\cos }^{-1}}\left\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\}$. To solve this, we will start from the innermost function and apply the above listed formulas till we reach the outermost function. We will convert all the functions in the form of $\cos $ or ${{\cos }^{-1}}$ with the use of the above listed formulas since the outermost function is a ${{\cos }^{-1}}$ function.

The innermost function is $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$. Using formula $\left( 2 \right)$, we get $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$ equal to,

$2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}$

Using formula $\left( 3 \right)$, we can write \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}\] as,

\[\begin{align}

& 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{1-{{\left( \dfrac{1}{\sqrt{2}-1} \right)}^{2}}} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\left( \dfrac{2+1-2\sqrt{2}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}} \right)} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\left( \dfrac{3-2\sqrt{2}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}} \right)} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{2-2\sqrt{2}}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{-2\left( \sqrt{2}-1 \right)}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\

& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( -1 \right) \\

\end{align}\]

From inverse trigonometric functions, we have ${{\tan }^{-1}}\left( -1 \right)=\dfrac{3\pi }{4}$. Hence, we can say from the above equation that \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}=\dfrac{3\pi }{4}\]. Since we had simplified $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$ to \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}\], so finally, we can say that \[2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{4}\].

Since we got \[2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{4}\], substituting this in the expression given in the question i.e. ${{\cos }^{-1}}\left\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\}$, we get ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}$ .

The angle inside the ${{\cos }^{-1}}\cos $ function is a primary angle since it is less that $\pi $ and greater than $0$. So, we can apply formula $\left( 1 \right)$ to ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}$.

Using formula $\left( 1 \right)$, we get ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}=\dfrac{3\pi }{4}$.

Hence, the answer is option (c).

Note: One must know that the formula ${{\cos }^{-1}}\left( \cos x \right)=x$is valid only when $x$ is a primary angle i.e. $x\in \left[ 0,\pi \right]$. One cannot use this formula if $x$ is not a primary angle i.e. $x\notin \left[ 0,\pi \right]$.

Last updated date: 01st Oct 2023

â€¢

Total views: 364.5k

â€¢

Views today: 3.64k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Is current density a scalar or a vector quantity class 12 physics JEE_Main

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE