The value of $c$ from the lagrange’s mean value theorem for which \[\] in $\left[ {1,5} \right]$ is
A). 5
B). 1
C). $\sqrt {15} $
D). None of these
Answer
Verified
509.1k+ views
Hint- Here, we will be finding the required unknown by equating the value of $f'\left( c \right)$ obtained through differentiating the given function with that obtained with the help of lagrange’s mean value theorem.
Given function is $f\left( x \right) = \sqrt {25 - {x^2}} $
This function is continuous for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for all of these values.
Now let us differentiate the given function with respect to $x$, we get
$
f'\left( x \right) = \dfrac{{d\left[ {{{\left( {25 - {x^2}} \right)}^{\dfrac{1}{2}}}} \right]}}{{dx}} = \left( {\dfrac{1}{2}} \right){\left( {25 - {x^2}} \right)^{\dfrac{1}{2} - 1}}\left( { - 2x} \right) = - x{\left( {25 - {x^2}} \right)^{ - \dfrac{1}{2}}} \\
\Rightarrow f'\left( x \right) = - \dfrac{x}{{\sqrt {\left( {25 - {x^2}} \right)} }}{\text{ }} \to {\text{(1)}} \\
$
Clearly, the above function is also differentiable for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for set of all these values.
So, according to lagrange’s mean value theorem if a function is continuous as well as differentiable for $x \in \left[ {a,b} \right]$, there exists $c \in \left[ {1,5} \right]$ such that $f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}}$ .
$\therefore f'\left( c \right) = \dfrac{{f\left( 5 \right) - f\left( 1 \right)}}{{5 - 1}} = \dfrac{{\sqrt {25 - {5^2}} - \sqrt {25 - {1^2}} }}{4} = \dfrac{{0 - \sqrt {24} }}{4} = - \dfrac{{\sqrt 6 }}{2}$
By using equation (1), we have
$f'\left( c \right) = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }} \Rightarrow - \dfrac{{\sqrt 6 }}{2} = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}$
Squaring both sides, the above equation becomes
\[
\Rightarrow {\left( { - \dfrac{{\sqrt 6 }}{2}} \right)^2} = {\left( { - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}} \right)^2} \Rightarrow \dfrac{6}{4} = \dfrac{{{c^2}}}{{\left( {25 - {c^2}} \right)}} \Rightarrow \dfrac{3}{2} = \dfrac{1}{{\left( {\dfrac{{25}}{{{c^2}}} - 1} \right)}} \Rightarrow \left( {\dfrac{{25}}{{{c^2}}} - 1} \right) = \dfrac{2}{3} \\
\Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{2}{3} + 1 \Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{5}{3} \Rightarrow \left( {\dfrac{{{c^2}}}{{25}}} \right) = \dfrac{3}{5} \Rightarrow {c^2} = \dfrac{{3 \times 25}}{5} = 15 \\
\Rightarrow c = \sqrt {15} {\text{ }} \in \left[ {1,5} \right] \\
\\
\]
Therefore, the value of $c$ is \[\sqrt {15} {\text{ }}\].
Hence, option C is correct.
Note- In these types of problems where lagrange’s mean value theorem is used, at the end it is ensured that the value of $c$ obtained should lie in the interval of $x$.
Given function is $f\left( x \right) = \sqrt {25 - {x^2}} $
This function is continuous for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for all of these values.
Now let us differentiate the given function with respect to $x$, we get
$
f'\left( x \right) = \dfrac{{d\left[ {{{\left( {25 - {x^2}} \right)}^{\dfrac{1}{2}}}} \right]}}{{dx}} = \left( {\dfrac{1}{2}} \right){\left( {25 - {x^2}} \right)^{\dfrac{1}{2} - 1}}\left( { - 2x} \right) = - x{\left( {25 - {x^2}} \right)^{ - \dfrac{1}{2}}} \\
\Rightarrow f'\left( x \right) = - \dfrac{x}{{\sqrt {\left( {25 - {x^2}} \right)} }}{\text{ }} \to {\text{(1)}} \\
$
Clearly, the above function is also differentiable for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for set of all these values.
So, according to lagrange’s mean value theorem if a function is continuous as well as differentiable for $x \in \left[ {a,b} \right]$, there exists $c \in \left[ {1,5} \right]$ such that $f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}}$ .
$\therefore f'\left( c \right) = \dfrac{{f\left( 5 \right) - f\left( 1 \right)}}{{5 - 1}} = \dfrac{{\sqrt {25 - {5^2}} - \sqrt {25 - {1^2}} }}{4} = \dfrac{{0 - \sqrt {24} }}{4} = - \dfrac{{\sqrt 6 }}{2}$
By using equation (1), we have
$f'\left( c \right) = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }} \Rightarrow - \dfrac{{\sqrt 6 }}{2} = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}$
Squaring both sides, the above equation becomes
\[
\Rightarrow {\left( { - \dfrac{{\sqrt 6 }}{2}} \right)^2} = {\left( { - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}} \right)^2} \Rightarrow \dfrac{6}{4} = \dfrac{{{c^2}}}{{\left( {25 - {c^2}} \right)}} \Rightarrow \dfrac{3}{2} = \dfrac{1}{{\left( {\dfrac{{25}}{{{c^2}}} - 1} \right)}} \Rightarrow \left( {\dfrac{{25}}{{{c^2}}} - 1} \right) = \dfrac{2}{3} \\
\Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{2}{3} + 1 \Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{5}{3} \Rightarrow \left( {\dfrac{{{c^2}}}{{25}}} \right) = \dfrac{3}{5} \Rightarrow {c^2} = \dfrac{{3 \times 25}}{5} = 15 \\
\Rightarrow c = \sqrt {15} {\text{ }} \in \left[ {1,5} \right] \\
\\
\]
Therefore, the value of $c$ is \[\sqrt {15} {\text{ }}\].
Hence, option C is correct.
Note- In these types of problems where lagrange’s mean value theorem is used, at the end it is ensured that the value of $c$ obtained should lie in the interval of $x$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Explain sex determination in humans with the help of class 12 biology CBSE
Explain with a neat labelled diagram the TS of mammalian class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE