Answer
Verified
473.7k+ views
Hint- Here, we will be finding the required unknown by equating the value of $f'\left( c \right)$ obtained through differentiating the given function with that obtained with the help of lagrange’s mean value theorem.
Given function is $f\left( x \right) = \sqrt {25 - {x^2}} $
This function is continuous for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for all of these values.
Now let us differentiate the given function with respect to $x$, we get
$
f'\left( x \right) = \dfrac{{d\left[ {{{\left( {25 - {x^2}} \right)}^{\dfrac{1}{2}}}} \right]}}{{dx}} = \left( {\dfrac{1}{2}} \right){\left( {25 - {x^2}} \right)^{\dfrac{1}{2} - 1}}\left( { - 2x} \right) = - x{\left( {25 - {x^2}} \right)^{ - \dfrac{1}{2}}} \\
\Rightarrow f'\left( x \right) = - \dfrac{x}{{\sqrt {\left( {25 - {x^2}} \right)} }}{\text{ }} \to {\text{(1)}} \\
$
Clearly, the above function is also differentiable for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for set of all these values.
So, according to lagrange’s mean value theorem if a function is continuous as well as differentiable for $x \in \left[ {a,b} \right]$, there exists $c \in \left[ {1,5} \right]$ such that $f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}}$ .
$\therefore f'\left( c \right) = \dfrac{{f\left( 5 \right) - f\left( 1 \right)}}{{5 - 1}} = \dfrac{{\sqrt {25 - {5^2}} - \sqrt {25 - {1^2}} }}{4} = \dfrac{{0 - \sqrt {24} }}{4} = - \dfrac{{\sqrt 6 }}{2}$
By using equation (1), we have
$f'\left( c \right) = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }} \Rightarrow - \dfrac{{\sqrt 6 }}{2} = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}$
Squaring both sides, the above equation becomes
\[
\Rightarrow {\left( { - \dfrac{{\sqrt 6 }}{2}} \right)^2} = {\left( { - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}} \right)^2} \Rightarrow \dfrac{6}{4} = \dfrac{{{c^2}}}{{\left( {25 - {c^2}} \right)}} \Rightarrow \dfrac{3}{2} = \dfrac{1}{{\left( {\dfrac{{25}}{{{c^2}}} - 1} \right)}} \Rightarrow \left( {\dfrac{{25}}{{{c^2}}} - 1} \right) = \dfrac{2}{3} \\
\Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{2}{3} + 1 \Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{5}{3} \Rightarrow \left( {\dfrac{{{c^2}}}{{25}}} \right) = \dfrac{3}{5} \Rightarrow {c^2} = \dfrac{{3 \times 25}}{5} = 15 \\
\Rightarrow c = \sqrt {15} {\text{ }} \in \left[ {1,5} \right] \\
\\
\]
Therefore, the value of $c$ is \[\sqrt {15} {\text{ }}\].
Hence, option C is correct.
Note- In these types of problems where lagrange’s mean value theorem is used, at the end it is ensured that the value of $c$ obtained should lie in the interval of $x$.
Given function is $f\left( x \right) = \sqrt {25 - {x^2}} $
This function is continuous for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for all of these values.
Now let us differentiate the given function with respect to $x$, we get
$
f'\left( x \right) = \dfrac{{d\left[ {{{\left( {25 - {x^2}} \right)}^{\dfrac{1}{2}}}} \right]}}{{dx}} = \left( {\dfrac{1}{2}} \right){\left( {25 - {x^2}} \right)^{\dfrac{1}{2} - 1}}\left( { - 2x} \right) = - x{\left( {25 - {x^2}} \right)^{ - \dfrac{1}{2}}} \\
\Rightarrow f'\left( x \right) = - \dfrac{x}{{\sqrt {\left( {25 - {x^2}} \right)} }}{\text{ }} \to {\text{(1)}} \\
$
Clearly, the above function is also differentiable for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for set of all these values.
So, according to lagrange’s mean value theorem if a function is continuous as well as differentiable for $x \in \left[ {a,b} \right]$, there exists $c \in \left[ {1,5} \right]$ such that $f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}}$ .
$\therefore f'\left( c \right) = \dfrac{{f\left( 5 \right) - f\left( 1 \right)}}{{5 - 1}} = \dfrac{{\sqrt {25 - {5^2}} - \sqrt {25 - {1^2}} }}{4} = \dfrac{{0 - \sqrt {24} }}{4} = - \dfrac{{\sqrt 6 }}{2}$
By using equation (1), we have
$f'\left( c \right) = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }} \Rightarrow - \dfrac{{\sqrt 6 }}{2} = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}$
Squaring both sides, the above equation becomes
\[
\Rightarrow {\left( { - \dfrac{{\sqrt 6 }}{2}} \right)^2} = {\left( { - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}} \right)^2} \Rightarrow \dfrac{6}{4} = \dfrac{{{c^2}}}{{\left( {25 - {c^2}} \right)}} \Rightarrow \dfrac{3}{2} = \dfrac{1}{{\left( {\dfrac{{25}}{{{c^2}}} - 1} \right)}} \Rightarrow \left( {\dfrac{{25}}{{{c^2}}} - 1} \right) = \dfrac{2}{3} \\
\Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{2}{3} + 1 \Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{5}{3} \Rightarrow \left( {\dfrac{{{c^2}}}{{25}}} \right) = \dfrac{3}{5} \Rightarrow {c^2} = \dfrac{{3 \times 25}}{5} = 15 \\
\Rightarrow c = \sqrt {15} {\text{ }} \in \left[ {1,5} \right] \\
\\
\]
Therefore, the value of $c$ is \[\sqrt {15} {\text{ }}\].
Hence, option C is correct.
Note- In these types of problems where lagrange’s mean value theorem is used, at the end it is ensured that the value of $c$ obtained should lie in the interval of $x$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE