
The value of $4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right)}{2!}{{\left( \log 2 \right)}^{2}}+\dfrac{2\left( 1+{{2}^{3}} \right)}{3!}{{\left( \log 2 \right)}^{3}}+....\ is$
A. 10
B. 12
C. $\log \left( {{3}^{2}}{{.4}^{2}} \right)$
D. $\log \left( {{2}^{2}}{{.3}^{2}} \right)$
Answer
619.5k+ views
Hint: Expand the given entity. It gives the expansion form of ${{e}^{\log 2\ }}and\ {{e}^{2\log 2}}$. Substitute the exponent values and simplify the expression obtained until you get a whole number.
Complete step-by-step answer:
Given us $4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{2\left( 1+{{2}^{3}} \right){{\left( \log 2 \right)}^{3}}}{3!}$
Take the first number 4 it can split as 2 + 2;
Take 2nd value, $2\left( 1+2 \right)\log 2$ it can be split us as;
$\left( 2+2\times 2 \right)\log 2=2\log 2+4\log 2$
Similarly,
$\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{\left( 2+{{2}^{3}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}$
The other values can be similarly splitted,
$\begin{align}
& 4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+........ \\
& =2+2+2\log 2+4\log 2+\dfrac{2{{(\log 2)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+..... \\
& =\left( 2+2\log 2+\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+\left( 2+4\log 2+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+.... \right) \\
\end{align}$
Taking 2 common from both brackets
$=2\left( 1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+2\left( 1+2\log 2+\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+.... \right)$
This is the fourier expansion of general expansion of $_{e}{{\log }^{2}}$.
$\therefore {{\ }_{e}}{{\log }^{2}}=1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+.....$
Similarly $1+2\log 2\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+....$ is the expansion of $_{e}{{\log }^{2\log 2}}$
$\therefore $ It can be written as,
$2\left( {{e}^{\log 2}} \right)+2\left( {{e}^{2\log 2}} \right)$
We know that ${{e}^{\log x}}=x$
$\begin{align}
& \therefore \ {{e}^{\log 2}}=2 \\
& {{e}^{2\log 2}}={{e}^{\log {{2}^{2}}}}={{2}^{2}}=4 \\
& \Rightarrow 2\times 2+2\times 4=4+8=12 \\
\end{align}$
Therefore, the correct answer is option B.
Note: Splitting of the entity is important in the beginning. So as to form the expansion form of ${{e}^{\log x}}$.
Complete step-by-step answer:
Given us $4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{2\left( 1+{{2}^{3}} \right){{\left( \log 2 \right)}^{3}}}{3!}$
Take the first number 4 it can split as 2 + 2;
Take 2nd value, $2\left( 1+2 \right)\log 2$ it can be split us as;
$\left( 2+2\times 2 \right)\log 2=2\log 2+4\log 2$
Similarly,
$\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{\left( 2+{{2}^{3}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}$
The other values can be similarly splitted,
$\begin{align}
& 4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+........ \\
& =2+2+2\log 2+4\log 2+\dfrac{2{{(\log 2)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+..... \\
& =\left( 2+2\log 2+\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+\left( 2+4\log 2+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+.... \right) \\
\end{align}$
Taking 2 common from both brackets
$=2\left( 1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+2\left( 1+2\log 2+\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+.... \right)$
This is the fourier expansion of general expansion of $_{e}{{\log }^{2}}$.
$\therefore {{\ }_{e}}{{\log }^{2}}=1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+.....$
Similarly $1+2\log 2\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+....$ is the expansion of $_{e}{{\log }^{2\log 2}}$
$\therefore $ It can be written as,
$2\left( {{e}^{\log 2}} \right)+2\left( {{e}^{2\log 2}} \right)$
We know that ${{e}^{\log x}}=x$
$\begin{align}
& \therefore \ {{e}^{\log 2}}=2 \\
& {{e}^{2\log 2}}={{e}^{\log {{2}^{2}}}}={{2}^{2}}=4 \\
& \Rightarrow 2\times 2+2\times 4=4+8=12 \\
\end{align}$
Therefore, the correct answer is option B.
Note: Splitting of the entity is important in the beginning. So as to form the expansion form of ${{e}^{\log x}}$.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

