Answer
Verified
492k+ views
Hint: Expand the given entity. It gives the expansion form of ${{e}^{\log 2\ }}and\ {{e}^{2\log 2}}$. Substitute the exponent values and simplify the expression obtained until you get a whole number.
Complete step-by-step answer:
Given us $4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{2\left( 1+{{2}^{3}} \right){{\left( \log 2 \right)}^{3}}}{3!}$
Take the first number 4 it can split as 2 + 2;
Take 2nd value, $2\left( 1+2 \right)\log 2$ it can be split us as;
$\left( 2+2\times 2 \right)\log 2=2\log 2+4\log 2$
Similarly,
$\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{\left( 2+{{2}^{3}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}$
The other values can be similarly splitted,
$\begin{align}
& 4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+........ \\
& =2+2+2\log 2+4\log 2+\dfrac{2{{(\log 2)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+..... \\
& =\left( 2+2\log 2+\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+\left( 2+4\log 2+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+.... \right) \\
\end{align}$
Taking 2 common from both brackets
$=2\left( 1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+2\left( 1+2\log 2+\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+.... \right)$
This is the fourier expansion of general expansion of $_{e}{{\log }^{2}}$.
$\therefore {{\ }_{e}}{{\log }^{2}}=1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+.....$
Similarly $1+2\log 2\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+....$ is the expansion of $_{e}{{\log }^{2\log 2}}$
$\therefore $ It can be written as,
$2\left( {{e}^{\log 2}} \right)+2\left( {{e}^{2\log 2}} \right)$
We know that ${{e}^{\log x}}=x$
$\begin{align}
& \therefore \ {{e}^{\log 2}}=2 \\
& {{e}^{2\log 2}}={{e}^{\log {{2}^{2}}}}={{2}^{2}}=4 \\
& \Rightarrow 2\times 2+2\times 4=4+8=12 \\
\end{align}$
Therefore, the correct answer is option B.
Note: Splitting of the entity is important in the beginning. So as to form the expansion form of ${{e}^{\log x}}$.
Complete step-by-step answer:
Given us $4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{2\left( 1+{{2}^{3}} \right){{\left( \log 2 \right)}^{3}}}{3!}$
Take the first number 4 it can split as 2 + 2;
Take 2nd value, $2\left( 1+2 \right)\log 2$ it can be split us as;
$\left( 2+2\times 2 \right)\log 2=2\log 2+4\log 2$
Similarly,
$\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{\left( 2+{{2}^{3}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}$
The other values can be similarly splitted,
$\begin{align}
& 4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+........ \\
& =2+2+2\log 2+4\log 2+\dfrac{2{{(\log 2)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+..... \\
& =\left( 2+2\log 2+\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+\left( 2+4\log 2+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+.... \right) \\
\end{align}$
Taking 2 common from both brackets
$=2\left( 1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+2\left( 1+2\log 2+\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+.... \right)$
This is the fourier expansion of general expansion of $_{e}{{\log }^{2}}$.
$\therefore {{\ }_{e}}{{\log }^{2}}=1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+.....$
Similarly $1+2\log 2\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+....$ is the expansion of $_{e}{{\log }^{2\log 2}}$
$\therefore $ It can be written as,
$2\left( {{e}^{\log 2}} \right)+2\left( {{e}^{2\log 2}} \right)$
We know that ${{e}^{\log x}}=x$
$\begin{align}
& \therefore \ {{e}^{\log 2}}=2 \\
& {{e}^{2\log 2}}={{e}^{\log {{2}^{2}}}}={{2}^{2}}=4 \\
& \Rightarrow 2\times 2+2\times 4=4+8=12 \\
\end{align}$
Therefore, the correct answer is option B.
Note: Splitting of the entity is important in the beginning. So as to form the expansion form of ${{e}^{\log x}}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE