Answer
Verified
455.4k+ views
Hint: Volume of the nucleus of radius $r$ is given by $V = \dfrac{4}{3}\pi {r^3}$ . Use the given expression $r = {r_0}{A^{1/3}}$ to find the value of radius of the nucleus.
Density of nucleus is given by, ${\text{Density}} = \dfrac{{{\text{Mass of nucleus}}}}{{{\text{Volume of nucleus}}}}$ . Here the mass of the nucleus will be in kg and not in amu.
Complete step by step answer:
We first use the given relation $r = {r_0}{A^{1/3}}$ in finding the volume of the nucleus.
As we know that the volume of the nucleus of radius $r$ is given by $V = \dfrac{4}{3}\pi {r^3}$
So, substituting the expression of radius in the formula of volume we have
$\implies$ $V = \dfrac{4}{3}\pi {\left( {{r_0}{A^{1/3}}} \right)^3} = \dfrac{4}{3}\pi A{r_0}^3$
Now, as we know that the mass of nucleus can be obtained through mass number after converting the unit amu to kg i.e. $M = A{\text{ amu}} = A \times 1.67 \times {10^{ - 27}}{\text{ kg}}$
Now, we know that the density of nucleus is given by $\rho = \dfrac{{{\text{Mass of nucleus}}}}{{{\text{Volume of nucleus}}}}$ . Here the mass of the nucleus will be in kg.
So, substituting the values in the above expression we have
$\implies$ $\rho = \dfrac{{A \times 1.67 \times {{10}^{ - 27}}}}{{\dfrac{4}{3}\pi A{r_0}^3}}$
As given in the question ${r_0} = 1.2f$ . So, substituting this in the expression we have
$\implies$ $\rho = \dfrac{{3 \times 1.67 \times {{10}^{ - 27}}}}{{4 \times 3.14 \times {{\left( {1.2 \times {{10}^{ - 15}}} \right)}^3}}} = \dfrac{{5.01 \times {{10}^{18}}}}{{21.71}} = 2.3 \times {10^{17}}{\text{ kg}}{{\text{m}}^{{\text{ - 3}}}}$
Hence, the mass density of sodium nucleus is $2.3 \times {10^{17}}{\text{ kg}}{{\text{m}}^{ - 3}}$ .
Additional Information:
There is a device called Nuclear Density Gauge (NZO) which is used to find the density of several materials that can be further used in the construction of roads, highways and airports runways. This device works with the help of gamma radiations and uses its interaction with materials to find its density. These devices are also used in the petroleum industry.
Note: In the expression for radius of nucleus $r = {r_0}{A^{1/3}}$ , ${r_0}$ is known as empirical constant. We can find in the expression of density of the nucleus that it is independent of the mass no. of the element or atom.
Density of nucleus is given by, ${\text{Density}} = \dfrac{{{\text{Mass of nucleus}}}}{{{\text{Volume of nucleus}}}}$ . Here the mass of the nucleus will be in kg and not in amu.
Complete step by step answer:
We first use the given relation $r = {r_0}{A^{1/3}}$ in finding the volume of the nucleus.
As we know that the volume of the nucleus of radius $r$ is given by $V = \dfrac{4}{3}\pi {r^3}$
So, substituting the expression of radius in the formula of volume we have
$\implies$ $V = \dfrac{4}{3}\pi {\left( {{r_0}{A^{1/3}}} \right)^3} = \dfrac{4}{3}\pi A{r_0}^3$
Now, as we know that the mass of nucleus can be obtained through mass number after converting the unit amu to kg i.e. $M = A{\text{ amu}} = A \times 1.67 \times {10^{ - 27}}{\text{ kg}}$
Now, we know that the density of nucleus is given by $\rho = \dfrac{{{\text{Mass of nucleus}}}}{{{\text{Volume of nucleus}}}}$ . Here the mass of the nucleus will be in kg.
So, substituting the values in the above expression we have
$\implies$ $\rho = \dfrac{{A \times 1.67 \times {{10}^{ - 27}}}}{{\dfrac{4}{3}\pi A{r_0}^3}}$
As given in the question ${r_0} = 1.2f$ . So, substituting this in the expression we have
$\implies$ $\rho = \dfrac{{3 \times 1.67 \times {{10}^{ - 27}}}}{{4 \times 3.14 \times {{\left( {1.2 \times {{10}^{ - 15}}} \right)}^3}}} = \dfrac{{5.01 \times {{10}^{18}}}}{{21.71}} = 2.3 \times {10^{17}}{\text{ kg}}{{\text{m}}^{{\text{ - 3}}}}$
Hence, the mass density of sodium nucleus is $2.3 \times {10^{17}}{\text{ kg}}{{\text{m}}^{ - 3}}$ .
Additional Information:
There is a device called Nuclear Density Gauge (NZO) which is used to find the density of several materials that can be further used in the construction of roads, highways and airports runways. This device works with the help of gamma radiations and uses its interaction with materials to find its density. These devices are also used in the petroleum industry.
Note: In the expression for radius of nucleus $r = {r_0}{A^{1/3}}$ , ${r_0}$ is known as empirical constant. We can find in the expression of density of the nucleus that it is independent of the mass no. of the element or atom.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE