Answer
Verified
499.2k+ views
Hint: Area of Parallelogram,$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right|$.
According to the question, we have two adjacent sides of parallelogram, which is $2\hat i - 4\hat j - 5\hat k$ and $2\hat i + 2\hat j + 3\hat k$
Now first we will assume the given value: -
$
\Rightarrow \vec a = 2\hat i - 4\hat j - 5\hat k \\
\Rightarrow \vec b = 2\hat i + 2\hat j + 3\hat k \\
$
And we know that any one diagonal of a parallelogram is given as
$
\vec P = \vec a + \vec b \\
\Rightarrow 2\hat i - 4\hat j - 5\hat k + 2\hat i + 2\hat j + 3\hat k \\
\Rightarrow 4\hat i - 2\hat j - 2\hat k \\
$
Therefore, we can calculate the unit vector along the diagonal, that is
$\dfrac{{{{\vec P}_1}}}{{\left| {{{\vec P}_1}} \right|}} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {16 + 4 + 4} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {24} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{2 \times \sqrt 6 }}$
$ \Rightarrow \dfrac{{2\hat i - \hat j - \hat k}}{{\sqrt 6 }}$
Also, another diagonal of a parallelogram is given by: -
$
\Rightarrow {{\vec P}_2} = \vec b - \vec a \\
\Rightarrow 2\hat i + 2\hat j + 3\hat k - 2\hat i + 4\hat j + \hat k \\
\Rightarrow 6\hat j + 8\hat k \\
$
Therefore, unit vector along the diagonal is given by: -
$
\dfrac{{{{\vec P}_2}}}{{\left| {{{\vec P}_2}} \right|}} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {36 + 64} }} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {100} }} = \dfrac{{6\hat j + 8\hat k}}{{10}} \\
\Rightarrow \dfrac{{3\hat j + 4\hat k}}{5} \\
$
Now, we will take the cross product of the two diagonals
$
\Rightarrow {{\vec P}_1} \times {{\vec P}_2} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
4&{ - 2}&{ - 2} \\
0&6&8
\end{array}} \right) \\
$
Further solving and simplify gives
$
\Rightarrow \hat i\left( { - 16 + 12} \right) - \hat j\left( {32 - 0} \right) + \hat k\left( {24 - 0} \right) \\
\Rightarrow - 4\hat i - 32\hat j + 24\hat k \\
$
From here, we will calculate the Area of parallelogram
$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right| = \dfrac{1}{2} \times \sqrt {16 + 1024 + 57} = \dfrac{{\sqrt {1616} }}{2}$
So, the answer is
$ \Rightarrow \dfrac{{4\sqrt {101} }}{2} = 2\sqrt {101} sq.units$
Note: - Whenever such a type of question is asked Always start with finding the diagonals of a parallelogram. After that find the unit vector along the diagonals one by one. Then use the formula Area of Parallelogram in terms of Diagonals,$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right|$ where ${\vec P_1}$and${\vec P_2}$are diagonals of a Parallelogram.
According to the question, we have two adjacent sides of parallelogram, which is $2\hat i - 4\hat j - 5\hat k$ and $2\hat i + 2\hat j + 3\hat k$
Now first we will assume the given value: -
$
\Rightarrow \vec a = 2\hat i - 4\hat j - 5\hat k \\
\Rightarrow \vec b = 2\hat i + 2\hat j + 3\hat k \\
$
And we know that any one diagonal of a parallelogram is given as
$
\vec P = \vec a + \vec b \\
\Rightarrow 2\hat i - 4\hat j - 5\hat k + 2\hat i + 2\hat j + 3\hat k \\
\Rightarrow 4\hat i - 2\hat j - 2\hat k \\
$
Therefore, we can calculate the unit vector along the diagonal, that is
$\dfrac{{{{\vec P}_1}}}{{\left| {{{\vec P}_1}} \right|}} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {16 + 4 + 4} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {24} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{2 \times \sqrt 6 }}$
$ \Rightarrow \dfrac{{2\hat i - \hat j - \hat k}}{{\sqrt 6 }}$
Also, another diagonal of a parallelogram is given by: -
$
\Rightarrow {{\vec P}_2} = \vec b - \vec a \\
\Rightarrow 2\hat i + 2\hat j + 3\hat k - 2\hat i + 4\hat j + \hat k \\
\Rightarrow 6\hat j + 8\hat k \\
$
Therefore, unit vector along the diagonal is given by: -
$
\dfrac{{{{\vec P}_2}}}{{\left| {{{\vec P}_2}} \right|}} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {36 + 64} }} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {100} }} = \dfrac{{6\hat j + 8\hat k}}{{10}} \\
\Rightarrow \dfrac{{3\hat j + 4\hat k}}{5} \\
$
Now, we will take the cross product of the two diagonals
$
\Rightarrow {{\vec P}_1} \times {{\vec P}_2} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
4&{ - 2}&{ - 2} \\
0&6&8
\end{array}} \right) \\
$
Further solving and simplify gives
$
\Rightarrow \hat i\left( { - 16 + 12} \right) - \hat j\left( {32 - 0} \right) + \hat k\left( {24 - 0} \right) \\
\Rightarrow - 4\hat i - 32\hat j + 24\hat k \\
$
From here, we will calculate the Area of parallelogram
$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right| = \dfrac{1}{2} \times \sqrt {16 + 1024 + 57} = \dfrac{{\sqrt {1616} }}{2}$
So, the answer is
$ \Rightarrow \dfrac{{4\sqrt {101} }}{2} = 2\sqrt {101} sq.units$
Note: - Whenever such a type of question is asked Always start with finding the diagonals of a parallelogram. After that find the unit vector along the diagonals one by one. Then use the formula Area of Parallelogram in terms of Diagonals,$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right|$ where ${\vec P_1}$and${\vec P_2}$are diagonals of a Parallelogram.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it