
The two adjacent sides of a parallelogram are $2\hat i - 4\hat j - 5\hat k$ and $2\hat i + 2\hat j + 3\hat k$. Find the two-unit vectors parallel to its diagonals. Using the diagonals vectors, find the area of the parallelogram.
Answer
625.2k+ views
Hint: Area of Parallelogram,$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right|$.
According to the question, we have two adjacent sides of parallelogram, which is $2\hat i - 4\hat j - 5\hat k$ and $2\hat i + 2\hat j + 3\hat k$
Now first we will assume the given value: -
$
\Rightarrow \vec a = 2\hat i - 4\hat j - 5\hat k \\
\Rightarrow \vec b = 2\hat i + 2\hat j + 3\hat k \\
$
And we know that any one diagonal of a parallelogram is given as
$
\vec P = \vec a + \vec b \\
\Rightarrow 2\hat i - 4\hat j - 5\hat k + 2\hat i + 2\hat j + 3\hat k \\
\Rightarrow 4\hat i - 2\hat j - 2\hat k \\
$
Therefore, we can calculate the unit vector along the diagonal, that is
$\dfrac{{{{\vec P}_1}}}{{\left| {{{\vec P}_1}} \right|}} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {16 + 4 + 4} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {24} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{2 \times \sqrt 6 }}$
$ \Rightarrow \dfrac{{2\hat i - \hat j - \hat k}}{{\sqrt 6 }}$
Also, another diagonal of a parallelogram is given by: -
$
\Rightarrow {{\vec P}_2} = \vec b - \vec a \\
\Rightarrow 2\hat i + 2\hat j + 3\hat k - 2\hat i + 4\hat j + \hat k \\
\Rightarrow 6\hat j + 8\hat k \\
$
Therefore, unit vector along the diagonal is given by: -
$
\dfrac{{{{\vec P}_2}}}{{\left| {{{\vec P}_2}} \right|}} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {36 + 64} }} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {100} }} = \dfrac{{6\hat j + 8\hat k}}{{10}} \\
\Rightarrow \dfrac{{3\hat j + 4\hat k}}{5} \\
$
Now, we will take the cross product of the two diagonals
$
\Rightarrow {{\vec P}_1} \times {{\vec P}_2} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
4&{ - 2}&{ - 2} \\
0&6&8
\end{array}} \right) \\
$
Further solving and simplify gives
$
\Rightarrow \hat i\left( { - 16 + 12} \right) - \hat j\left( {32 - 0} \right) + \hat k\left( {24 - 0} \right) \\
\Rightarrow - 4\hat i - 32\hat j + 24\hat k \\
$
From here, we will calculate the Area of parallelogram
$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right| = \dfrac{1}{2} \times \sqrt {16 + 1024 + 57} = \dfrac{{\sqrt {1616} }}{2}$
So, the answer is
$ \Rightarrow \dfrac{{4\sqrt {101} }}{2} = 2\sqrt {101} sq.units$
Note: - Whenever such a type of question is asked Always start with finding the diagonals of a parallelogram. After that find the unit vector along the diagonals one by one. Then use the formula Area of Parallelogram in terms of Diagonals,$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right|$ where ${\vec P_1}$and${\vec P_2}$are diagonals of a Parallelogram.
According to the question, we have two adjacent sides of parallelogram, which is $2\hat i - 4\hat j - 5\hat k$ and $2\hat i + 2\hat j + 3\hat k$
Now first we will assume the given value: -
$
\Rightarrow \vec a = 2\hat i - 4\hat j - 5\hat k \\
\Rightarrow \vec b = 2\hat i + 2\hat j + 3\hat k \\
$
And we know that any one diagonal of a parallelogram is given as
$
\vec P = \vec a + \vec b \\
\Rightarrow 2\hat i - 4\hat j - 5\hat k + 2\hat i + 2\hat j + 3\hat k \\
\Rightarrow 4\hat i - 2\hat j - 2\hat k \\
$
Therefore, we can calculate the unit vector along the diagonal, that is
$\dfrac{{{{\vec P}_1}}}{{\left| {{{\vec P}_1}} \right|}} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {16 + 4 + 4} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {24} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{2 \times \sqrt 6 }}$
$ \Rightarrow \dfrac{{2\hat i - \hat j - \hat k}}{{\sqrt 6 }}$
Also, another diagonal of a parallelogram is given by: -
$
\Rightarrow {{\vec P}_2} = \vec b - \vec a \\
\Rightarrow 2\hat i + 2\hat j + 3\hat k - 2\hat i + 4\hat j + \hat k \\
\Rightarrow 6\hat j + 8\hat k \\
$
Therefore, unit vector along the diagonal is given by: -
$
\dfrac{{{{\vec P}_2}}}{{\left| {{{\vec P}_2}} \right|}} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {36 + 64} }} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {100} }} = \dfrac{{6\hat j + 8\hat k}}{{10}} \\
\Rightarrow \dfrac{{3\hat j + 4\hat k}}{5} \\
$
Now, we will take the cross product of the two diagonals
$
\Rightarrow {{\vec P}_1} \times {{\vec P}_2} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
4&{ - 2}&{ - 2} \\
0&6&8
\end{array}} \right) \\
$
Further solving and simplify gives
$
\Rightarrow \hat i\left( { - 16 + 12} \right) - \hat j\left( {32 - 0} \right) + \hat k\left( {24 - 0} \right) \\
\Rightarrow - 4\hat i - 32\hat j + 24\hat k \\
$
From here, we will calculate the Area of parallelogram
$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right| = \dfrac{1}{2} \times \sqrt {16 + 1024 + 57} = \dfrac{{\sqrt {1616} }}{2}$
So, the answer is
$ \Rightarrow \dfrac{{4\sqrt {101} }}{2} = 2\sqrt {101} sq.units$
Note: - Whenever such a type of question is asked Always start with finding the diagonals of a parallelogram. After that find the unit vector along the diagonals one by one. Then use the formula Area of Parallelogram in terms of Diagonals,$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right|$ where ${\vec P_1}$and${\vec P_2}$are diagonals of a Parallelogram.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

