
The triple product \[(\vec d + \vec a)[\vec a \times (\vec b \times (\vec c \times \vec d))]\]simplifies to
a. \[(\vec b\vec d)[\vec d\vec a\vec c]\]
b. \[(\vec b\vec c)[\vec a\vec b\vec d]\]
c. \[(\vec b\vec a)[\vec a\vec b\vec d]\]
d. none
Answer
593.1k+ views
Hint: Start by simplifying the double cross product. You can use the formula, \[\vec a \times (\vec b \times \vec c) = (\vec a.\vec c)\vec b - (\vec a.\vec b)\vec c\]. And then use that if the two components of the box product is equal then, its value will be zero.
Complete step by step solution: We have, given, \[(\vec d + \vec a)[\vec a \times (\vec b \times (\vec c \times \vec d))]\]
\[ = (\vec d + \vec a)[\vec a \times (\vec b.\vec d)\vec c - (\vec b.\vec c)\vec d]\]
As, \[\vec a \times (\vec b \times \vec c) = (\vec a.\vec c)\vec b - (\vec a.\vec b)\vec c\]
Now, again doing cross product, with the\[\vec a\]we get,
\[ = (\vec d + \vec a)[(\vec b.\vec d)(\vec a \times \vec c) - (\vec b.\vec c)(\vec a \times \vec d)]\]
Next, we do dot product with \[\vec a\]and \[\vec d\] one by one,
\[ = (\vec b.\vec d)[\vec d.(\vec a \times \vec c) + \vec a.(\vec a \times \vec c)] - (\vec b.\vec c)[\vec d.(\vec a \times \vec d) + \vec a.(\vec a \times \vec d)]\]
\[ = (\vec b.\vec d)[[\vec d\vec a\vec c] + [\vec a\vec a\vec c] - (\vec b.\vec c)[[\vec d\vec a\vec d] + [\vec a\vec a\vec d]]\]
As per the definition of the box product that can be written.
Box product is specified as, The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two.
Now, we also know if two elements of the box product are equal then its value turns out to be zero.
So, we have,
\[(\vec b.\vec d)[[\vec d\vec a\vec c] + [\vec a\vec a\vec c] - (\vec b.\vec c)[[\vec d\vec a\vec d] + [\vec a\vec a\vec d]]\]
\[ = (\vec b.\vec d)[\vec d\vec a\vec c]\]
As, \[[\vec a\vec a\vec d]\]\[ = \]\[[\vec d\vec a\vec d]\]\[ = \]\[[\vec a\vec a\vec c]\]\[ = \]0 as they have two similar terms.
So, we have our answer as option a. \[ = (\vec b.\vec d)[\vec d\vec a\vec c]\]
Note: If in the box product two terms are equal then the value will be zero can be proved in this way,
We have,
\[[\vec a\vec b\vec c] = \vec a.(\vec b \times \vec c)\]
Now, if any two of them are equal, say \[\vec b = \vec c\]
Then,
\[[\vec a\vec b\vec b] = \vec a.(\vec b \times \vec b)\]
But now, the value of \[(\vec b \times \vec b)\]= 0, so we will have the value of the box product turn out to be zero.
Complete step by step solution: We have, given, \[(\vec d + \vec a)[\vec a \times (\vec b \times (\vec c \times \vec d))]\]
\[ = (\vec d + \vec a)[\vec a \times (\vec b.\vec d)\vec c - (\vec b.\vec c)\vec d]\]
As, \[\vec a \times (\vec b \times \vec c) = (\vec a.\vec c)\vec b - (\vec a.\vec b)\vec c\]
Now, again doing cross product, with the\[\vec a\]we get,
\[ = (\vec d + \vec a)[(\vec b.\vec d)(\vec a \times \vec c) - (\vec b.\vec c)(\vec a \times \vec d)]\]
Next, we do dot product with \[\vec a\]and \[\vec d\] one by one,
\[ = (\vec b.\vec d)[\vec d.(\vec a \times \vec c) + \vec a.(\vec a \times \vec c)] - (\vec b.\vec c)[\vec d.(\vec a \times \vec d) + \vec a.(\vec a \times \vec d)]\]
\[ = (\vec b.\vec d)[[\vec d\vec a\vec c] + [\vec a\vec a\vec c] - (\vec b.\vec c)[[\vec d\vec a\vec d] + [\vec a\vec a\vec d]]\]
As per the definition of the box product that can be written.
Box product is specified as, The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two.
Now, we also know if two elements of the box product are equal then its value turns out to be zero.
So, we have,
\[(\vec b.\vec d)[[\vec d\vec a\vec c] + [\vec a\vec a\vec c] - (\vec b.\vec c)[[\vec d\vec a\vec d] + [\vec a\vec a\vec d]]\]
\[ = (\vec b.\vec d)[\vec d\vec a\vec c]\]
As, \[[\vec a\vec a\vec d]\]\[ = \]\[[\vec d\vec a\vec d]\]\[ = \]\[[\vec a\vec a\vec c]\]\[ = \]0 as they have two similar terms.
So, we have our answer as option a. \[ = (\vec b.\vec d)[\vec d\vec a\vec c]\]
Note: If in the box product two terms are equal then the value will be zero can be proved in this way,
We have,
\[[\vec a\vec b\vec c] = \vec a.(\vec b \times \vec c)\]
Now, if any two of them are equal, say \[\vec b = \vec c\]
Then,
\[[\vec a\vec b\vec b] = \vec a.(\vec b \times \vec b)\]
But now, the value of \[(\vec b \times \vec b)\]= 0, so we will have the value of the box product turn out to be zero.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

