
The total revenue in Rupees received from the sale of $x$ units of a product is given by \[R(x) = 3{x^2} + 36x + 5\]. The marginal revenue, when $x = 15$ is,
(a) $116$
(b) $96$
(c) $90$
(d) $126$
Answer
609.3k+ views
Hint: Differentiate the given equation carefully without missing any term in between. ALSO Marginal revenue is the derivative of total revenue with respect to demand.
We have the given equation as,\[R(x) = 3{x^2} + 36x + 5\]
… (1)
Now, we know that,
⇒Marginal revenue $ = \dfrac{{dR(x)}}{{dx}}$
Therefore, differentiating equation (1) with respect to $x$ , we get,
\[\dfrac{{dR(x)}}{{dx}} = 3\dfrac{{d{x^2}}}{{dx}} + 36\dfrac{{dx}}{{dx}} + 5\dfrac{{d1}}{{dx}}\]
\[ \Rightarrow \dfrac{{dR(x)}}{{dx}} = 3(2x) + 36x + 0\]
\[ \Rightarrow \dfrac{{dR(x)}}{{dx}} = 6x + 36\]
It is given in the question that we have to calculate the marginal revenue at \[x = 15\]
Therefore, Marginal revenue \[ = 6(15) + 36\]
\[\therefore \dfrac{{dR(x)}}{{dx}} = 126\]
Hence, the marginal revenue at \[x = 15\] is \[126\].
So, the required solution is (d) $126$.
Note: To solve these types of problems, simply differentiate the given equation and substitute the value of the given variable to obtain an optimum solution.
We have the given equation as,\[R(x) = 3{x^2} + 36x + 5\]
… (1)
Now, we know that,
⇒Marginal revenue $ = \dfrac{{dR(x)}}{{dx}}$
Therefore, differentiating equation (1) with respect to $x$ , we get,
\[\dfrac{{dR(x)}}{{dx}} = 3\dfrac{{d{x^2}}}{{dx}} + 36\dfrac{{dx}}{{dx}} + 5\dfrac{{d1}}{{dx}}\]
\[ \Rightarrow \dfrac{{dR(x)}}{{dx}} = 3(2x) + 36x + 0\]
\[ \Rightarrow \dfrac{{dR(x)}}{{dx}} = 6x + 36\]
It is given in the question that we have to calculate the marginal revenue at \[x = 15\]
Therefore, Marginal revenue \[ = 6(15) + 36\]
\[\therefore \dfrac{{dR(x)}}{{dx}} = 126\]
Hence, the marginal revenue at \[x = 15\] is \[126\].
So, the required solution is (d) $126$.
Note: To solve these types of problems, simply differentiate the given equation and substitute the value of the given variable to obtain an optimum solution.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

