
The sum of the first two terms of an infinite G.P is $5$ and each term is three times the sum of succeeding terms. Find the series.
Answer
621.9k+ views
Hint: From the given conditions in the problem first we will try to find the first term and common ratio of the series using nth term formula which is given by ${T_n} = a{r^{n - 1}}$
Where ${T_n}$ is the nth term, a is the first term and r is the common ratio.
Given that:
The sum of first two term is $5$
$ \Rightarrow {T_1} + {T_2} = 5$
$ \Rightarrow a + ar = 5$ ………………………….. (1)
And each term is three times the succeeding term
${T_n} = 3({T_{n + 1}} + {T_{n + 2}} + ........\infty )$
Substituting the value of ${T_n}$ in term of a and r
$ \Rightarrow a{r^{n - 1}} = 3(a{r^n} + a{r^{n + 1}} + .....\infty )$
Simplifying the above equation we will get
$
\Rightarrow 1 = 3r(\dfrac{1}{{1 - r}}) \\
\Rightarrow 1 - r = 3r \\
\Rightarrow 4r = 1 \\
\Rightarrow r = \dfrac{1}{4} \\
$
Substitute the value of r in equation 1, we get
$
\Rightarrow a + a(\dfrac{1}{4}) = 5 \\
\Rightarrow \dfrac{5}{4}a = 5 \\
\Rightarrow a = 4 \\
$
First term of the G.P. $ = a = 4$
Second term of the G.P. $ = ar = 4 \times \dfrac{1}{4} = 1$
Third term of the G.P. $ = a{r^2} = 4 \times {\left( {\dfrac{1}{4}} \right)^2} = \dfrac{1}{4}$
And so on the G.P continues…..
Hence, the infinite G.P series is
$4,1,\dfrac{1}{4},\dfrac{1}{{16}},...........\infty $
Note: A G.P is a sequence such that any element after the first is obtained by multiplying the preceding element by a constant called common ratio. For solving this type of problem remember the formula of the nth term of a geometric progression series and read the conditions of the question carefully and then start solving for the unknown values whether common ratio or first term.
Where ${T_n}$ is the nth term, a is the first term and r is the common ratio.
Given that:
The sum of first two term is $5$
$ \Rightarrow {T_1} + {T_2} = 5$
$ \Rightarrow a + ar = 5$ ………………………….. (1)
And each term is three times the succeeding term
${T_n} = 3({T_{n + 1}} + {T_{n + 2}} + ........\infty )$
Substituting the value of ${T_n}$ in term of a and r
$ \Rightarrow a{r^{n - 1}} = 3(a{r^n} + a{r^{n + 1}} + .....\infty )$
Simplifying the above equation we will get
$
\Rightarrow 1 = 3r(\dfrac{1}{{1 - r}}) \\
\Rightarrow 1 - r = 3r \\
\Rightarrow 4r = 1 \\
\Rightarrow r = \dfrac{1}{4} \\
$
Substitute the value of r in equation 1, we get
$
\Rightarrow a + a(\dfrac{1}{4}) = 5 \\
\Rightarrow \dfrac{5}{4}a = 5 \\
\Rightarrow a = 4 \\
$
First term of the G.P. $ = a = 4$
Second term of the G.P. $ = ar = 4 \times \dfrac{1}{4} = 1$
Third term of the G.P. $ = a{r^2} = 4 \times {\left( {\dfrac{1}{4}} \right)^2} = \dfrac{1}{4}$
And so on the G.P continues…..
Hence, the infinite G.P series is
$4,1,\dfrac{1}{4},\dfrac{1}{{16}},...........\infty $
Note: A G.P is a sequence such that any element after the first is obtained by multiplying the preceding element by a constant called common ratio. For solving this type of problem remember the formula of the nth term of a geometric progression series and read the conditions of the question carefully and then start solving for the unknown values whether common ratio or first term.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

