The straight line $\dfrac{x-3}{3}=\dfrac{y-2}{1}=\dfrac{z-1}{0}$ is:
(a) parallel to x axis
(b) parallel to y axis
(c) parallel to z axis
(d) perpendicular to z axis
Last updated date: 23rd Mar 2023
•
Total views: 306k
•
Views today: 6.83k
Answer
306k+ views
Hint: First, find the direction cosine of the given line. Then find the direction cosines of the coordinate axes. Next, find the dot product of the direction cosine of the given line to the direction cosines of the coordinate axes one by one. If any dot product comes out to be zero, then those two vectors will be perpendicular to each other.
Complete step-by-step answer:
We are given the line $\dfrac{x-3}{3}=\dfrac{y-2}{1}=\dfrac{z-1}{0}$ and we need to find its orientation with respect to the coordinate axes.
From, the equation of the line, we can see that it passes through the point (3,2,1) and it has the direction cosine, ${{a}_{1}}=$(3,1,0)
We also know the direction cosines of the coordinate axes. These are:
Direction cosines of x axis, ${{a}_{x}}=$ (1,0,0)
Direction cosines of y axis, ${{a}_{y}}=$ (0,1,0)
Direction cosines of z axis, ${{a}_{z}}=$ (0,0,1)
Now, we will take out the dot product of ${{a}_{1}}$ with ${{a}_{x}}$, ${{a}_{y}}$, and ${{a}_{z}}$ one by one.
We know that the cos product of two direction cosines: (a,b,c) and (d,e,f) is equal to $a\cdot d+b\cdot e+c\cdot f$. Using this, we will calculate the dot product of ${{a}_{1}}$ with ${{a}_{x}}$, ${{a}_{y}}$, and ${{a}_{z}}$ one by one.
${{a}_{1}}\cdot {{a}_{x}}=$ (3,1,0)$\cdot $(1,0,0) = 3 + 0 + 0 = 3
${{a}_{1}}\cdot {{a}_{y}}=$ (3,1,0)$\cdot $(0,1,0) = 0 + 1 + 0 = 1
${{a}_{1}}\cdot {{a}_{z}}=$ (3,1,0)$\cdot $(0,0,1) = 0 + 0 + 0 = 0
Now, we also know that if the dot product of two non zero vectors is zero, then they are perpendicular to each other as the dot product of two vectors is the product of their modulus and the cosine of the angle between them. Since the vectors are non zero, so the cosine should be zero which is possible only if the angle between them is ${{a}_{1}}\cdot {{a}_{z}}$ i.e. they are perpendicular to each other.
Using this fact, we find that ${{a}_{1}}\cdot {{a}_{z}}$ is equal to 0.
Thus, z axis and the given line are perpendicular.
Hence, option (d) is correct.
Note: In this question. It is very important to know the fact that if the dot product of two non-zero vectors is zero, then they are perpendicular to each other as the dot product of two vectors is the product of their modulus and the cosine of the angle between them. Since the vectors are non-zero, so the cosine should be zero which is possible only if the angle between them is ${{a}_{1}}\cdot {{a}_{z}}$ i.e. they are perpendicular to each other.
Complete step-by-step answer:
We are given the line $\dfrac{x-3}{3}=\dfrac{y-2}{1}=\dfrac{z-1}{0}$ and we need to find its orientation with respect to the coordinate axes.
From, the equation of the line, we can see that it passes through the point (3,2,1) and it has the direction cosine, ${{a}_{1}}=$(3,1,0)
We also know the direction cosines of the coordinate axes. These are:
Direction cosines of x axis, ${{a}_{x}}=$ (1,0,0)
Direction cosines of y axis, ${{a}_{y}}=$ (0,1,0)
Direction cosines of z axis, ${{a}_{z}}=$ (0,0,1)
Now, we will take out the dot product of ${{a}_{1}}$ with ${{a}_{x}}$, ${{a}_{y}}$, and ${{a}_{z}}$ one by one.
We know that the cos product of two direction cosines: (a,b,c) and (d,e,f) is equal to $a\cdot d+b\cdot e+c\cdot f$. Using this, we will calculate the dot product of ${{a}_{1}}$ with ${{a}_{x}}$, ${{a}_{y}}$, and ${{a}_{z}}$ one by one.
${{a}_{1}}\cdot {{a}_{x}}=$ (3,1,0)$\cdot $(1,0,0) = 3 + 0 + 0 = 3
${{a}_{1}}\cdot {{a}_{y}}=$ (3,1,0)$\cdot $(0,1,0) = 0 + 1 + 0 = 1
${{a}_{1}}\cdot {{a}_{z}}=$ (3,1,0)$\cdot $(0,0,1) = 0 + 0 + 0 = 0
Now, we also know that if the dot product of two non zero vectors is zero, then they are perpendicular to each other as the dot product of two vectors is the product of their modulus and the cosine of the angle between them. Since the vectors are non zero, so the cosine should be zero which is possible only if the angle between them is ${{a}_{1}}\cdot {{a}_{z}}$ i.e. they are perpendicular to each other.
Using this fact, we find that ${{a}_{1}}\cdot {{a}_{z}}$ is equal to 0.
Thus, z axis and the given line are perpendicular.
Hence, option (d) is correct.
Note: In this question. It is very important to know the fact that if the dot product of two non-zero vectors is zero, then they are perpendicular to each other as the dot product of two vectors is the product of their modulus and the cosine of the angle between them. Since the vectors are non-zero, so the cosine should be zero which is possible only if the angle between them is ${{a}_{1}}\cdot {{a}_{z}}$ i.e. they are perpendicular to each other.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
