
The standard electrode potentials of \[Zn\] and \[Ni\] respectively are \[ - 0.76{\text{ }}V\] and\[ - 0.25{\text{ }}V\],Then the standard emf of the spontaneous cell by coupling these under standard conditions is:
A) \[ + {\text{ }}1.01{\text{ }}V\]
B) \[ - {\text{ }}0.51{\text{ }}V\]
C) \[\; + {\text{ }}0.82{\text{ }}V\]
D) \[ + {\text{ }}0.25{\text{ }}V\]
E) \[ + {\text{ }}0.51{\text{ }}V\]
Answer
543.9k+ views
Hint: Standard Electrode Potentials is genuinely difficult to gauge the potential of a single electrode: just the contrast between the potentials of two terminals can be estimated. We can, in any case, think about the standard cell potentials for two distinctive galvanic cells that share one sort of electrode for all intents and purposes.
Complete step by step answer:
Standard terminal potential (\[E^\circ \]) in electrochemistry is characterized as the proportion of the individual potential of a reversible electrode at standard state with particles at a powerful convergence of \[1mol{\text{ }}d{m^{ - 3}}\] at the pressure of \[1{\text{ }}atm\].
The cathode potentials of metals given above assist us with understanding the simplicity of a metal to get oxidized or diminished. With this we can choose the anode and cathode terminals. Oxidation happens at anode and decrease at cathode, so pick the terminals that fulfill the necessities of the individual terminals.
Electrochemistry is the part of actual science that essentially manages the connection among power and recognizable compound change. Electrochemical response is a synthetic response wherein current is remotely provided or delivered through an unconstrained substance response. Substance responses where electrons are straightforwardly moved between the constituent particles or molecules are called oxidation-decrease or rather redox responses.
All in all, we can say that a response is unconstrained when the emf of the cell is positive. It shows that the cell response is doable and, in this way, happens. In the electrochemical arrangement the request for components is \[Zn{\text{ }} > {\text{ }}Fe{\text{ }} > {\text{ }}Ni\] regarding simplicity of oxidation. Thus, the cell is possible when \[Zn\] is anode and either \[Fe\] or \[Ni\] is cathode
The standard anode potential of \[Zn\]( \[E_{anode}^o\])\[ = - 0.76{\text{ }}V\]
The standard anode potential of \[Ni\] (\[E_{cathode}^o\]) \[ = - 0.25\]
For spontaneous reaction Ecell ought to be positive.
Along these lines, the response ought to be:
\[Zn\left( s \right) + N{i^{2 + }}\left( {aq} \right) \to Z{n^{2 + }}\left( {aq} \right) + Ni\left( s \right)\]
\[E_{cell}^o = E_{\left( {cathode} \right)}^o - E_{\left( {anode} \right)}^o\]
\[ = - 0.25 - \left( { - 0.76} \right) = + 0.51V\]
So, the correct option is (\[E\]).
Note:
The standard cell potential (\[E_{cell}^o\]) is accordingly the distinction between the organized decrease potentials of the two half-responses, not their total:
\[E_{cell}^o = E_{\left( {cathode} \right)}^o - E_{\left( {anode} \right)}^o\]
\[\Delta G{^\circ _{cell}}\; = {\text{ }} - nFE{^\circ _{cell}}\](For Gibbs free energy).
Complete step by step answer:
Standard terminal potential (\[E^\circ \]) in electrochemistry is characterized as the proportion of the individual potential of a reversible electrode at standard state with particles at a powerful convergence of \[1mol{\text{ }}d{m^{ - 3}}\] at the pressure of \[1{\text{ }}atm\].
The cathode potentials of metals given above assist us with understanding the simplicity of a metal to get oxidized or diminished. With this we can choose the anode and cathode terminals. Oxidation happens at anode and decrease at cathode, so pick the terminals that fulfill the necessities of the individual terminals.
Electrochemistry is the part of actual science that essentially manages the connection among power and recognizable compound change. Electrochemical response is a synthetic response wherein current is remotely provided or delivered through an unconstrained substance response. Substance responses where electrons are straightforwardly moved between the constituent particles or molecules are called oxidation-decrease or rather redox responses.
All in all, we can say that a response is unconstrained when the emf of the cell is positive. It shows that the cell response is doable and, in this way, happens. In the electrochemical arrangement the request for components is \[Zn{\text{ }} > {\text{ }}Fe{\text{ }} > {\text{ }}Ni\] regarding simplicity of oxidation. Thus, the cell is possible when \[Zn\] is anode and either \[Fe\] or \[Ni\] is cathode
The standard anode potential of \[Zn\]( \[E_{anode}^o\])\[ = - 0.76{\text{ }}V\]
The standard anode potential of \[Ni\] (\[E_{cathode}^o\]) \[ = - 0.25\]
For spontaneous reaction Ecell ought to be positive.
Along these lines, the response ought to be:
\[Zn\left( s \right) + N{i^{2 + }}\left( {aq} \right) \to Z{n^{2 + }}\left( {aq} \right) + Ni\left( s \right)\]
\[E_{cell}^o = E_{\left( {cathode} \right)}^o - E_{\left( {anode} \right)}^o\]
\[ = - 0.25 - \left( { - 0.76} \right) = + 0.51V\]
So, the correct option is (\[E\]).
Note:
The standard cell potential (\[E_{cell}^o\]) is accordingly the distinction between the organized decrease potentials of the two half-responses, not their total:
\[E_{cell}^o = E_{\left( {cathode} \right)}^o - E_{\left( {anode} \right)}^o\]
\[\Delta G{^\circ _{cell}}\; = {\text{ }} - nFE{^\circ _{cell}}\](For Gibbs free energy).
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

