
The spin magnetic moment of cobalt in the compound \[{K_2}\left[ {Co{{\left( {SCN} \right)}_4}} \right]\] is:
A.\[\sqrt 3 B.M\]
B.\[\sqrt 8 B.M\]
C.\[\sqrt {15} B.M\]
D.\[\sqrt {24} B.M\]
Answer
504.9k+ views
Hint: Transition elements show magnetic moment due to presence of unpaired electrons to their d orbitals. With increasing the number of unpaired electrons, the spin magnetic moment value increases. The formula to calculate the spin magnetic moment of the transition elements is \[\mu = \sqrt {n\left( {n + 2} \right)} \]. Where n is the number of unpaired electrons.
Complete step by step answer:
When an atom is in a magnetic field it behaves like a magnet, this is called a magnetic moment. This is because the electrons of the atom interact with the magnetic field. On the basis of interactions, the magnetic moments can be divided into two parts.
- Diamagnetism
-Paramagnetism.
In solid structures due to the different kind of alignment of the magnetic moments with each other, there are some other kind of magnetism, which are,
-Ferromagnetism
-Antiferromagnetism
-Ferromagnetism
In case of electrons there are two spins possible \[ + \dfrac{1}{2}\] and \[ - \dfrac{1}{2}\]. If unpaired electrons are present the transition metal becomes paramagnetic and Paramagnetism increases with increasing the number of unpaired electrons. The magnetic moment of transition metals depends upon the spin angular momentum of electrons and the orbital angular momentum. According to this the formula of magnetic moment would be,\[\mu = \sqrt {\mathop L\limits^ \to \left( {\mathop L\limits^ \to + 1} \right) + 4\mathop S\limits^ \to \left( {\mathop S\limits^ \to + 1} \right)} \]
For the 1st transition series metals the orbital contribution towards the magnetic moments can be neglected. Therefore, the magnetic moment can be calculated using the modified formula,\[{\mu _s} = \sqrt {4\mathop S\limits^ \to \left( {\mathop S\limits^ \to + 1} \right)} \]. Where, \[\mathop S\limits^ \to \] is the spin angular momentum of the electrons. Spin angular momentum is equal to the half of the unpaired electrons present in the d orbital of transition metals. Therefore, the spin only formula is \[{\mu _s} = \sqrt {n\left( {n + 2} \right)} \]. Where, n is the number of unpaired electrons.
Now in the complex, \[{K_2}\left[ {Co{{\left( {SCN} \right)}_4}} \right]\] the oxidation state of Co is, +2. Therefore, the number of unpaired electrons in the d orbital is 3.
The spin only magnetic moment is,
\[
{\mu _s} = \sqrt {n\left( {n + 2} \right)} \\
or,{\mu _s} = \sqrt {3\left( {3 + 2} \right)} \\
or,{\mu _s} = \sqrt {3\left( 5 \right)} \\
or,{\mu _s} = \sqrt {15} \\
\\
\]
So, the correct answer is C.
Note:
For 1st transition series the orbital contribution is negligible, so there we can calculate the magnetic moment by using the spin only formula \[\mu = \sqrt {n\left( {n + 2} \right)} \].
Complete step by step answer:
When an atom is in a magnetic field it behaves like a magnet, this is called a magnetic moment. This is because the electrons of the atom interact with the magnetic field. On the basis of interactions, the magnetic moments can be divided into two parts.
- Diamagnetism
-Paramagnetism.
In solid structures due to the different kind of alignment of the magnetic moments with each other, there are some other kind of magnetism, which are,
-Ferromagnetism
-Antiferromagnetism
-Ferromagnetism
In case of electrons there are two spins possible \[ + \dfrac{1}{2}\] and \[ - \dfrac{1}{2}\]. If unpaired electrons are present the transition metal becomes paramagnetic and Paramagnetism increases with increasing the number of unpaired electrons. The magnetic moment of transition metals depends upon the spin angular momentum of electrons and the orbital angular momentum. According to this the formula of magnetic moment would be,\[\mu = \sqrt {\mathop L\limits^ \to \left( {\mathop L\limits^ \to + 1} \right) + 4\mathop S\limits^ \to \left( {\mathop S\limits^ \to + 1} \right)} \]
For the 1st transition series metals the orbital contribution towards the magnetic moments can be neglected. Therefore, the magnetic moment can be calculated using the modified formula,\[{\mu _s} = \sqrt {4\mathop S\limits^ \to \left( {\mathop S\limits^ \to + 1} \right)} \]. Where, \[\mathop S\limits^ \to \] is the spin angular momentum of the electrons. Spin angular momentum is equal to the half of the unpaired electrons present in the d orbital of transition metals. Therefore, the spin only formula is \[{\mu _s} = \sqrt {n\left( {n + 2} \right)} \]. Where, n is the number of unpaired electrons.
Now in the complex, \[{K_2}\left[ {Co{{\left( {SCN} \right)}_4}} \right]\] the oxidation state of Co is, +2. Therefore, the number of unpaired electrons in the d orbital is 3.
The spin only magnetic moment is,
\[
{\mu _s} = \sqrt {n\left( {n + 2} \right)} \\
or,{\mu _s} = \sqrt {3\left( {3 + 2} \right)} \\
or,{\mu _s} = \sqrt {3\left( 5 \right)} \\
or,{\mu _s} = \sqrt {15} \\
\\
\]
So, the correct answer is C.
Note:
For 1st transition series the orbital contribution is negligible, so there we can calculate the magnetic moment by using the spin only formula \[\mu = \sqrt {n\left( {n + 2} \right)} \].
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
