The spin magnetic moment of cobalt in the compound \[{K_2}\left[ {Co{{\left( {SCN} \right)}_4}} \right]\] is:
A.\[\sqrt 3 B.M\]
B.\[\sqrt 8 B.M\]
C.\[\sqrt {15} B.M\]
D.\[\sqrt {24} B.M\]
Answer
335.1k+ views
Hint: Transition elements show magnetic moment due to presence of unpaired electrons to their d orbitals. With increasing the number of unpaired electrons, the spin magnetic moment value increases. The formula to calculate the spin magnetic moment of the transition elements is \[\mu = \sqrt {n\left( {n + 2} \right)} \]. Where n is the number of unpaired electrons.
Complete step by step answer:
When an atom is in a magnetic field it behaves like a magnet, this is called a magnetic moment. This is because the electrons of the atom interact with the magnetic field. On the basis of interactions, the magnetic moments can be divided into two parts.
- Diamagnetism
-Paramagnetism.
In solid structures due to the different kind of alignment of the magnetic moments with each other, there are some other kind of magnetism, which are,
-Ferromagnetism
-Antiferromagnetism
-Ferromagnetism
In case of electrons there are two spins possible \[ + \dfrac{1}{2}\] and \[ - \dfrac{1}{2}\]. If unpaired electrons are present the transition metal becomes paramagnetic and Paramagnetism increases with increasing the number of unpaired electrons. The magnetic moment of transition metals depends upon the spin angular momentum of electrons and the orbital angular momentum. According to this the formula of magnetic moment would be,\[\mu = \sqrt {\mathop L\limits^ \to \left( {\mathop L\limits^ \to + 1} \right) + 4\mathop S\limits^ \to \left( {\mathop S\limits^ \to + 1} \right)} \]
For the 1st transition series metals the orbital contribution towards the magnetic moments can be neglected. Therefore, the magnetic moment can be calculated using the modified formula,\[{\mu _s} = \sqrt {4\mathop S\limits^ \to \left( {\mathop S\limits^ \to + 1} \right)} \]. Where, \[\mathop S\limits^ \to \] is the spin angular momentum of the electrons. Spin angular momentum is equal to the half of the unpaired electrons present in the d orbital of transition metals. Therefore, the spin only formula is \[{\mu _s} = \sqrt {n\left( {n + 2} \right)} \]. Where, n is the number of unpaired electrons.
Now in the complex, \[{K_2}\left[ {Co{{\left( {SCN} \right)}_4}} \right]\] the oxidation state of Co is, +2. Therefore, the number of unpaired electrons in the d orbital is 3.
The spin only magnetic moment is,
\[
{\mu _s} = \sqrt {n\left( {n + 2} \right)} \\
or,{\mu _s} = \sqrt {3\left( {3 + 2} \right)} \\
or,{\mu _s} = \sqrt {3\left( 5 \right)} \\
or,{\mu _s} = \sqrt {15} \\
\\
\]
So, the correct answer is C.
Note:
For 1st transition series the orbital contribution is negligible, so there we can calculate the magnetic moment by using the spin only formula \[\mu = \sqrt {n\left( {n + 2} \right)} \].
Complete step by step answer:
When an atom is in a magnetic field it behaves like a magnet, this is called a magnetic moment. This is because the electrons of the atom interact with the magnetic field. On the basis of interactions, the magnetic moments can be divided into two parts.
- Diamagnetism
-Paramagnetism.
In solid structures due to the different kind of alignment of the magnetic moments with each other, there are some other kind of magnetism, which are,
-Ferromagnetism
-Antiferromagnetism
-Ferromagnetism
In case of electrons there are two spins possible \[ + \dfrac{1}{2}\] and \[ - \dfrac{1}{2}\]. If unpaired electrons are present the transition metal becomes paramagnetic and Paramagnetism increases with increasing the number of unpaired electrons. The magnetic moment of transition metals depends upon the spin angular momentum of electrons and the orbital angular momentum. According to this the formula of magnetic moment would be,\[\mu = \sqrt {\mathop L\limits^ \to \left( {\mathop L\limits^ \to + 1} \right) + 4\mathop S\limits^ \to \left( {\mathop S\limits^ \to + 1} \right)} \]
For the 1st transition series metals the orbital contribution towards the magnetic moments can be neglected. Therefore, the magnetic moment can be calculated using the modified formula,\[{\mu _s} = \sqrt {4\mathop S\limits^ \to \left( {\mathop S\limits^ \to + 1} \right)} \]. Where, \[\mathop S\limits^ \to \] is the spin angular momentum of the electrons. Spin angular momentum is equal to the half of the unpaired electrons present in the d orbital of transition metals. Therefore, the spin only formula is \[{\mu _s} = \sqrt {n\left( {n + 2} \right)} \]. Where, n is the number of unpaired electrons.
Now in the complex, \[{K_2}\left[ {Co{{\left( {SCN} \right)}_4}} \right]\] the oxidation state of Co is, +2. Therefore, the number of unpaired electrons in the d orbital is 3.
The spin only magnetic moment is,
\[
{\mu _s} = \sqrt {n\left( {n + 2} \right)} \\
or,{\mu _s} = \sqrt {3\left( {3 + 2} \right)} \\
or,{\mu _s} = \sqrt {3\left( 5 \right)} \\
or,{\mu _s} = \sqrt {15} \\
\\
\]
So, the correct answer is C.
Note:
For 1st transition series the orbital contribution is negligible, so there we can calculate the magnetic moment by using the spin only formula \[\mu = \sqrt {n\left( {n + 2} \right)} \].
Last updated date: 24th Sep 2023
•
Total views: 335.1k
•
Views today: 5.35k
Recently Updated Pages
Difference between hardware and software

What is the Full Form of DNA and RNA

10 Advantages and Disadvantages of Plastic

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the IUPAC name of CH3CH CH COOH A 2Butenoic class 11 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

The dimensions of potential gradient are A MLT 3A 1 class 11 physics CBSE

Define electric potential and write down its dimen class 9 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE
