Answer
Verified
448.8k+ views
Hint: We can make the nonlinear differential equation to linear differential equation by dividing the equation with a suitable power of ${\text{y}}$ and then by giving a suitable substitution. We can solve the linear ordinary differential equation by finding the integrating factor and integrating. Then apply the initial value to get the value of the constant of integration.
Complete step by step solution: We have a nonlinear ordinary differential equation.
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{{\text{2y}}}}$
We can make the equation by following steps. Firstly, we can divide the equation by $\dfrac{{\text{1}}}{{\text{y}}}$,
$\dfrac{{{\text{ydy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{\text{2}}}$
Let ${\text{v = }}{{\text{y}}^{\text{2}}}$,then,
$\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ = 2y}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$
$ \Rightarrow {\text{y}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{\text{dv}}}}{{{\text{dx}}}}$
Making this substitution in , we get,
$\dfrac{{\text{1}}}{{\text{2}}}{ \times }\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{v}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{\text{2}}}$
Multiplying the equation throughout with 2, we get,
$\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ + vsecx = tanx}}$
Now we have a linear differential equation with ${\text{P}}\left( {\text{x}} \right){\text{ = secx}}$ and ${\text{Q}}\left( {\text{x}} \right){\text{ = tanx}}$. Then the integrating factor is given by,
${\text{IF = }}{{\text{e}}^{\int {{\text{P}}\left( {\text{x}} \right){\text{dx}}} }}{\text{ = }}{{\text{e}}^{\int {{\text{secxdx}}} }}$
We know that, \[\int {{\text{secxdx = ln}}\left| {{\text{tanx + secx}}} \right|} \],
$ \Rightarrow {\text{IF = }}{{\text{e}}^{{\text{ln}}\left| {{\text{tanx + secx}}} \right|}}$
We know that, ${{\text{e}}^{{\text{ln}}\left| {\text{a}} \right|}}{\text{ = a}}$. So, we get,
$ \Rightarrow {\text{IF = tanx + secx}}$
Now we can solve for ${\text{v}}$,
${\text{v = }}\dfrac{{\text{1}}}{{{\text{IF}}}}\int {{\text{IF} \times \text{Q}}\left( {\text{x}} \right){\text{dx}}} {\text{ + C = }}\dfrac{{\text{1}}}{{{\text{tanx + secx}}}}\int {{\text{tanx(tanx + secx)dx}}} {\text{ + C}}$
We can solve the integration part.
$\int {{\text{tanx}}\left( {{\text{tanx + secx}}} \right){\text{dx}}} {\text{ = }}\int {{\text{(ta}}{{\text{n}}^{\text{2}}}{\text{x + tanxsecx)dx}}} $
We know that ${\text{ta}}{{\text{n}}^{\text{2}}}{\text{x = se}}{{\text{c}}^{\text{2}}}{\text{x - 1}}$. So, we get,
$
{\text{ = }}\int {\left( {{\text{se}}{{\text{c}}^{\text{2}}}{\text{x - 1 + tanxsecx}}} \right)} {\text{dx}} \\
{\text{ = }}\int {{\text{se}}{{\text{c}}^{\text{2}}}{\text{xdx}}} {\text{ - }}\int {{\text{1dx}}} {\text{ + }}\int {{\text{tanxsecxdx}}} \\
$
We know the integral of $\int {{\text{se}}{{\text{c}}^{\text{2}}}{\text{xdx}}} {\text{ = tanx}}$, $\int {{\text{1dx}}} {\text{ = x}}$and $\int {{\text{tanxsecxdx}}} {\text{ = secx}}$. So, we get,
$\int {{\text{tanx}}\left( {{\text{tanx + secx}}} \right){\text{dx}}} {\text{ = tanx - x + secx}}$
So, ${\text{v}}$becomes,
${\text{v = }}\dfrac{{{\text{tanx + secx - x}}}}{{{\text{tanx + secx}}}}{\text{ + C}}$
Resubstituting ${\text{v = }}{{\text{y}}^{\text{2}}}$, we get,
${{\text{y}}^{\text{2}}}{\text{ = 1 - }}\dfrac{{\text{x}}}{{{\text{tanx + secx}}}}{\text{ + C}}$
Applying initial condition, ${\text{y}}\left( {\text{0}} \right){\text{ = 1}}$,
\[
{\text{1 = 1 - }}\dfrac{{\text{0}}}{{{\text{tanx + secx}}}}{\text{ + C}} \\
\Rightarrow {\text{C = 1 - 1 = 0}} \\
\]
Giving, ${\text{C = 0}}$, we get,
${{\text{y}}^{\text{2}}}{\text{ = 1 - }}\dfrac{{\text{x}}}{{{\text{tanx + secx}}}}$
Therefore, the correct answer is option D.
Note: A non-linear ordinary differential equation of the form $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + yP}}\left( {\text{x}} \right){\text{ = }}{{\text{y}}^{\text{n}}}{\text{Q}}\left( {\text{x}} \right)$ can be converted into linear form by dividing the equation by ${{\text{y}}^{\text{n}}}$, the give substitution for ${{\text{y}}^{{\text{1 - n}}}}$and divide by ${\text{1 - n}}$.
We can solve the linear differential equation by finding the integrating factor and integrating. As the initial value is given, we must find the value of the constant of integration by applying the initial condition. This type of problem with the initial values given is called initial value problems.
Complete step by step solution: We have a nonlinear ordinary differential equation.
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{{\text{2y}}}}$
We can make the equation by following steps. Firstly, we can divide the equation by $\dfrac{{\text{1}}}{{\text{y}}}$,
$\dfrac{{{\text{ydy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{\text{2}}}$
Let ${\text{v = }}{{\text{y}}^{\text{2}}}$,then,
$\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ = 2y}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$
$ \Rightarrow {\text{y}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{\text{dv}}}}{{{\text{dx}}}}$
Making this substitution in , we get,
$\dfrac{{\text{1}}}{{\text{2}}}{ \times }\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{v}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{\text{2}}}$
Multiplying the equation throughout with 2, we get,
$\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ + vsecx = tanx}}$
Now we have a linear differential equation with ${\text{P}}\left( {\text{x}} \right){\text{ = secx}}$ and ${\text{Q}}\left( {\text{x}} \right){\text{ = tanx}}$. Then the integrating factor is given by,
${\text{IF = }}{{\text{e}}^{\int {{\text{P}}\left( {\text{x}} \right){\text{dx}}} }}{\text{ = }}{{\text{e}}^{\int {{\text{secxdx}}} }}$
We know that, \[\int {{\text{secxdx = ln}}\left| {{\text{tanx + secx}}} \right|} \],
$ \Rightarrow {\text{IF = }}{{\text{e}}^{{\text{ln}}\left| {{\text{tanx + secx}}} \right|}}$
We know that, ${{\text{e}}^{{\text{ln}}\left| {\text{a}} \right|}}{\text{ = a}}$. So, we get,
$ \Rightarrow {\text{IF = tanx + secx}}$
Now we can solve for ${\text{v}}$,
${\text{v = }}\dfrac{{\text{1}}}{{{\text{IF}}}}\int {{\text{IF} \times \text{Q}}\left( {\text{x}} \right){\text{dx}}} {\text{ + C = }}\dfrac{{\text{1}}}{{{\text{tanx + secx}}}}\int {{\text{tanx(tanx + secx)dx}}} {\text{ + C}}$
We can solve the integration part.
$\int {{\text{tanx}}\left( {{\text{tanx + secx}}} \right){\text{dx}}} {\text{ = }}\int {{\text{(ta}}{{\text{n}}^{\text{2}}}{\text{x + tanxsecx)dx}}} $
We know that ${\text{ta}}{{\text{n}}^{\text{2}}}{\text{x = se}}{{\text{c}}^{\text{2}}}{\text{x - 1}}$. So, we get,
$
{\text{ = }}\int {\left( {{\text{se}}{{\text{c}}^{\text{2}}}{\text{x - 1 + tanxsecx}}} \right)} {\text{dx}} \\
{\text{ = }}\int {{\text{se}}{{\text{c}}^{\text{2}}}{\text{xdx}}} {\text{ - }}\int {{\text{1dx}}} {\text{ + }}\int {{\text{tanxsecxdx}}} \\
$
We know the integral of $\int {{\text{se}}{{\text{c}}^{\text{2}}}{\text{xdx}}} {\text{ = tanx}}$, $\int {{\text{1dx}}} {\text{ = x}}$and $\int {{\text{tanxsecxdx}}} {\text{ = secx}}$. So, we get,
$\int {{\text{tanx}}\left( {{\text{tanx + secx}}} \right){\text{dx}}} {\text{ = tanx - x + secx}}$
So, ${\text{v}}$becomes,
${\text{v = }}\dfrac{{{\text{tanx + secx - x}}}}{{{\text{tanx + secx}}}}{\text{ + C}}$
Resubstituting ${\text{v = }}{{\text{y}}^{\text{2}}}$, we get,
${{\text{y}}^{\text{2}}}{\text{ = 1 - }}\dfrac{{\text{x}}}{{{\text{tanx + secx}}}}{\text{ + C}}$
Applying initial condition, ${\text{y}}\left( {\text{0}} \right){\text{ = 1}}$,
\[
{\text{1 = 1 - }}\dfrac{{\text{0}}}{{{\text{tanx + secx}}}}{\text{ + C}} \\
\Rightarrow {\text{C = 1 - 1 = 0}} \\
\]
Giving, ${\text{C = 0}}$, we get,
${{\text{y}}^{\text{2}}}{\text{ = 1 - }}\dfrac{{\text{x}}}{{{\text{tanx + secx}}}}$
Therefore, the correct answer is option D.
Note: A non-linear ordinary differential equation of the form $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + yP}}\left( {\text{x}} \right){\text{ = }}{{\text{y}}^{\text{n}}}{\text{Q}}\left( {\text{x}} \right)$ can be converted into linear form by dividing the equation by ${{\text{y}}^{\text{n}}}$, the give substitution for ${{\text{y}}^{{\text{1 - n}}}}$and divide by ${\text{1 - n}}$.
We can solve the linear differential equation by finding the integrating factor and integrating. As the initial value is given, we must find the value of the constant of integration by applying the initial condition. This type of problem with the initial values given is called initial value problems.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths