
The solution of differential equation $({{e}^{x}}+1)ydy=(y+1){{e}^{x}}dx$ is,
A. $({{e}^{x}}+1)(y+1)=c{{e}^{y}}$
B. $({{e}^{x}}+1)\left| y+1 \right|=c{{e}^{-y}}$
C. $({{e}^{x}}+1)(y+1)=\pm c{{e}^{y}}$
D. None of these
Answer
605.4k+ views
Hint: First of all in any differential equation try to separate the variable with their respective differential and then start further solving by method of variable separable form of differential equation, otherwise think of another method that you already know to solve it.
Complete step-by-step answer:
We will separate the variable and try to solve it so, let’s begin with that and we will get;
\[\Rightarrow \dfrac{y}{y+1}dy=\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx\]
Now, further we will integrate both sides and we get;
\[\Rightarrow \int{\dfrac{y}{y+1}}dy=\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx}\]
\[\Rightarrow \int{1-\dfrac{1}{1+y}}dy=\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}}dx\].................................(a)
Now, we will integrate the both sides of the equality separately as shown below;
\[\Rightarrow \int{1-\dfrac{1}{y+1}}dy=y-\ln \left| y+1 \right|\text{ + }\ln c\text{ }......................\text{(1)}\]
Also, we have $\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx}$.
Here, let’s suppose that $1+{{e}^{x}}=u$.
$\Rightarrow {{e}^{x}}dx=du$.
Now, we will substitute these values in above integral and we get :
$\Rightarrow \int{\dfrac{1}{u}du=\ln u=\ln (1+{{e}^{x}})...................(2)}$
Now, we will substitute the above value of integrals (1) and (2) in the equation (a) and we get;
\[\begin{align}
& y-\ln \left| y+1 \right|+\ln c=\ln (1+{{e}^{x}}) \\
& \Rightarrow y=\ln (1+{{e}^{x}})+\ln \left| y+1 \right|-\ln c \\
\end{align}\]
Here, we will use the logarithmic formulae which are given below.
These formulae are \[\ln a+\ln b=\ln (ab)\text{ }\]and $\ln a-\ln b=\ln (\dfrac{a}{b})$.
So, on further simplification we will get,
\[\begin{align}
& \Rightarrow y=\ln \dfrac{(1+{{e}^{x}})\left| 1+y \right|}{c} \\
& \Rightarrow {{e}^{y}}=\dfrac{(1+{{e}^{x}})\left| 1+y \right|}{c} \\
& \Rightarrow c{{e}^{y}}=(1+{{e}^{x}})\left| 1+y \right| \\
& \Rightarrow \pm c{{e}^{y}}=(1+{{e}^{x}})(1+y) \\
\end{align}\]
Hence, the solution of the given differential equation is \[({{e}^{x}}+1)(1+y)=\pm c{{e}^{y}}\].
Therefore, the correct option of the above question will be C.
NOTE:
Be careful while doing calculations because there are many places where you can make a mistake. Take care of signs during calculation since it will also change your final answer.
Also take care of the modulus sign which is very important and if you will miss it then the whole solution will become wrong and you will get the incorrect option.
Complete step-by-step answer:
We will separate the variable and try to solve it so, let’s begin with that and we will get;
\[\Rightarrow \dfrac{y}{y+1}dy=\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx\]
Now, further we will integrate both sides and we get;
\[\Rightarrow \int{\dfrac{y}{y+1}}dy=\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx}\]
\[\Rightarrow \int{1-\dfrac{1}{1+y}}dy=\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}}dx\].................................(a)
Now, we will integrate the both sides of the equality separately as shown below;
\[\Rightarrow \int{1-\dfrac{1}{y+1}}dy=y-\ln \left| y+1 \right|\text{ + }\ln c\text{ }......................\text{(1)}\]
Also, we have $\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx}$.
Here, let’s suppose that $1+{{e}^{x}}=u$.
$\Rightarrow {{e}^{x}}dx=du$.
Now, we will substitute these values in above integral and we get :
$\Rightarrow \int{\dfrac{1}{u}du=\ln u=\ln (1+{{e}^{x}})...................(2)}$
Now, we will substitute the above value of integrals (1) and (2) in the equation (a) and we get;
\[\begin{align}
& y-\ln \left| y+1 \right|+\ln c=\ln (1+{{e}^{x}}) \\
& \Rightarrow y=\ln (1+{{e}^{x}})+\ln \left| y+1 \right|-\ln c \\
\end{align}\]
Here, we will use the logarithmic formulae which are given below.
These formulae are \[\ln a+\ln b=\ln (ab)\text{ }\]and $\ln a-\ln b=\ln (\dfrac{a}{b})$.
So, on further simplification we will get,
\[\begin{align}
& \Rightarrow y=\ln \dfrac{(1+{{e}^{x}})\left| 1+y \right|}{c} \\
& \Rightarrow {{e}^{y}}=\dfrac{(1+{{e}^{x}})\left| 1+y \right|}{c} \\
& \Rightarrow c{{e}^{y}}=(1+{{e}^{x}})\left| 1+y \right| \\
& \Rightarrow \pm c{{e}^{y}}=(1+{{e}^{x}})(1+y) \\
\end{align}\]
Hence, the solution of the given differential equation is \[({{e}^{x}}+1)(1+y)=\pm c{{e}^{y}}\].
Therefore, the correct option of the above question will be C.
NOTE:
Be careful while doing calculations because there are many places where you can make a mistake. Take care of signs during calculation since it will also change your final answer.
Also take care of the modulus sign which is very important and if you will miss it then the whole solution will become wrong and you will get the incorrect option.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

