
The solution of differential equation $({{e}^{x}}+1)ydy=(y+1){{e}^{x}}dx$ is,
A. $({{e}^{x}}+1)(y+1)=c{{e}^{y}}$
B. $({{e}^{x}}+1)\left| y+1 \right|=c{{e}^{-y}}$
C. $({{e}^{x}}+1)(y+1)=\pm c{{e}^{y}}$
D. None of these
Answer
591.9k+ views
Hint: First of all in any differential equation try to separate the variable with their respective differential and then start further solving by method of variable separable form of differential equation, otherwise think of another method that you already know to solve it.
Complete step-by-step answer:
We will separate the variable and try to solve it so, let’s begin with that and we will get;
\[\Rightarrow \dfrac{y}{y+1}dy=\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx\]
Now, further we will integrate both sides and we get;
\[\Rightarrow \int{\dfrac{y}{y+1}}dy=\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx}\]
\[\Rightarrow \int{1-\dfrac{1}{1+y}}dy=\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}}dx\].................................(a)
Now, we will integrate the both sides of the equality separately as shown below;
\[\Rightarrow \int{1-\dfrac{1}{y+1}}dy=y-\ln \left| y+1 \right|\text{ + }\ln c\text{ }......................\text{(1)}\]
Also, we have $\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx}$.
Here, let’s suppose that $1+{{e}^{x}}=u$.
$\Rightarrow {{e}^{x}}dx=du$.
Now, we will substitute these values in above integral and we get :
$\Rightarrow \int{\dfrac{1}{u}du=\ln u=\ln (1+{{e}^{x}})...................(2)}$
Now, we will substitute the above value of integrals (1) and (2) in the equation (a) and we get;
\[\begin{align}
& y-\ln \left| y+1 \right|+\ln c=\ln (1+{{e}^{x}}) \\
& \Rightarrow y=\ln (1+{{e}^{x}})+\ln \left| y+1 \right|-\ln c \\
\end{align}\]
Here, we will use the logarithmic formulae which are given below.
These formulae are \[\ln a+\ln b=\ln (ab)\text{ }\]and $\ln a-\ln b=\ln (\dfrac{a}{b})$.
So, on further simplification we will get,
\[\begin{align}
& \Rightarrow y=\ln \dfrac{(1+{{e}^{x}})\left| 1+y \right|}{c} \\
& \Rightarrow {{e}^{y}}=\dfrac{(1+{{e}^{x}})\left| 1+y \right|}{c} \\
& \Rightarrow c{{e}^{y}}=(1+{{e}^{x}})\left| 1+y \right| \\
& \Rightarrow \pm c{{e}^{y}}=(1+{{e}^{x}})(1+y) \\
\end{align}\]
Hence, the solution of the given differential equation is \[({{e}^{x}}+1)(1+y)=\pm c{{e}^{y}}\].
Therefore, the correct option of the above question will be C.
NOTE:
Be careful while doing calculations because there are many places where you can make a mistake. Take care of signs during calculation since it will also change your final answer.
Also take care of the modulus sign which is very important and if you will miss it then the whole solution will become wrong and you will get the incorrect option.
Complete step-by-step answer:
We will separate the variable and try to solve it so, let’s begin with that and we will get;
\[\Rightarrow \dfrac{y}{y+1}dy=\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx\]
Now, further we will integrate both sides and we get;
\[\Rightarrow \int{\dfrac{y}{y+1}}dy=\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx}\]
\[\Rightarrow \int{1-\dfrac{1}{1+y}}dy=\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}}dx\].................................(a)
Now, we will integrate the both sides of the equality separately as shown below;
\[\Rightarrow \int{1-\dfrac{1}{y+1}}dy=y-\ln \left| y+1 \right|\text{ + }\ln c\text{ }......................\text{(1)}\]
Also, we have $\int{\dfrac{{{e}^{x}}}{{{e}^{x}}+1}dx}$.
Here, let’s suppose that $1+{{e}^{x}}=u$.
$\Rightarrow {{e}^{x}}dx=du$.
Now, we will substitute these values in above integral and we get :
$\Rightarrow \int{\dfrac{1}{u}du=\ln u=\ln (1+{{e}^{x}})...................(2)}$
Now, we will substitute the above value of integrals (1) and (2) in the equation (a) and we get;
\[\begin{align}
& y-\ln \left| y+1 \right|+\ln c=\ln (1+{{e}^{x}}) \\
& \Rightarrow y=\ln (1+{{e}^{x}})+\ln \left| y+1 \right|-\ln c \\
\end{align}\]
Here, we will use the logarithmic formulae which are given below.
These formulae are \[\ln a+\ln b=\ln (ab)\text{ }\]and $\ln a-\ln b=\ln (\dfrac{a}{b})$.
So, on further simplification we will get,
\[\begin{align}
& \Rightarrow y=\ln \dfrac{(1+{{e}^{x}})\left| 1+y \right|}{c} \\
& \Rightarrow {{e}^{y}}=\dfrac{(1+{{e}^{x}})\left| 1+y \right|}{c} \\
& \Rightarrow c{{e}^{y}}=(1+{{e}^{x}})\left| 1+y \right| \\
& \Rightarrow \pm c{{e}^{y}}=(1+{{e}^{x}})(1+y) \\
\end{align}\]
Hence, the solution of the given differential equation is \[({{e}^{x}}+1)(1+y)=\pm c{{e}^{y}}\].
Therefore, the correct option of the above question will be C.
NOTE:
Be careful while doing calculations because there are many places where you can make a mistake. Take care of signs during calculation since it will also change your final answer.
Also take care of the modulus sign which is very important and if you will miss it then the whole solution will become wrong and you will get the incorrect option.
Recently Updated Pages
Define current sensitivity and voltage sensitivity class 12 physics CBSE

Draw the molecular orbital energy level diagram of class 12 chemistry CBSE

Predict the direction of induced current in metal rings class 12 physics CBSE

A star appears slightly higher above then its actual class 12 physics CBSE

Why did political leaders differ sharply over the question class 12 social science CBSE

Draw a welllabelled diagram of a human excretory system class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

