
The smallest natural number of the form$123X43Y$, which is exactly divisible by 6 is……
Answer
217.5k+ views
HINT-Number is exactly divisible by 6 if the number is divisible by 2 and 3.
We have a number of the form$123X43Y$which is divisible by 6.
By the divisibility test of 6 it should be divisible by 2 and 3.
For $123X43Y$to be exactly divisible by 2 the last digit $'y'$should be divisible by 2 so, last digit $'y'$should be multiple of 2 which is$\left\{ {0,2,4,6,8} \right\}$.
Now, to be divisible by 3, the sum of the digits should be divisible by 3.
$\therefore 1 + 2 + 3 + x + 4 + 3 + y = 13 + x + y$
So as we see that $13 + x + y$ is divisible by 3 if the lowest possible value of $x + y$ be 2.
From here the possible cases for $x$ and $y$ is
$
x = 0,y = 2..............\left( 1 \right) \\
x = 2,y = 0...............\left( 2 \right) \\
x = 1,y = 1...............\left( 3 \right) \\
$
So from the following cases the third case is eliminated because $'y'$should be divisible by 2.
So for $x = 0,y = 2$ the number will be$ = 1230432$
And for $x = 2,y = 0$ the number will be$ = 1232430$
Now you have to find out the smallest number in the form $123X43Y$, which is exactly divisible by 6
So, it is clear from the above two numbers that for$x = 0,y = 2$, the number is minimum
So the possible number is$ = 1230432$.
So, this is the required answer.
Note: - In such types of questions the key concept we have to remember is that always remember the divisibility rule of 2, 3 and 6 which is stated above, then according to the divisibility rule find the numbers, then check which number is smaller we will get the required answer.
We have a number of the form$123X43Y$which is divisible by 6.
By the divisibility test of 6 it should be divisible by 2 and 3.
For $123X43Y$to be exactly divisible by 2 the last digit $'y'$should be divisible by 2 so, last digit $'y'$should be multiple of 2 which is$\left\{ {0,2,4,6,8} \right\}$.
Now, to be divisible by 3, the sum of the digits should be divisible by 3.
$\therefore 1 + 2 + 3 + x + 4 + 3 + y = 13 + x + y$
So as we see that $13 + x + y$ is divisible by 3 if the lowest possible value of $x + y$ be 2.
From here the possible cases for $x$ and $y$ is
$
x = 0,y = 2..............\left( 1 \right) \\
x = 2,y = 0...............\left( 2 \right) \\
x = 1,y = 1...............\left( 3 \right) \\
$
So from the following cases the third case is eliminated because $'y'$should be divisible by 2.
So for $x = 0,y = 2$ the number will be$ = 1230432$
And for $x = 2,y = 0$ the number will be$ = 1232430$
Now you have to find out the smallest number in the form $123X43Y$, which is exactly divisible by 6
So, it is clear from the above two numbers that for$x = 0,y = 2$, the number is minimum
So the possible number is$ = 1230432$.
So, this is the required answer.
Note: - In such types of questions the key concept we have to remember is that always remember the divisibility rule of 2, 3 and 6 which is stated above, then according to the divisibility rule find the numbers, then check which number is smaller we will get the required answer.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

