Answer

Verified

412.8k+ views

**Hint:**We will use the formula of the angle between any two vectors to find the required set of values. We know that the angle between any two vectors is \[\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left\| {\overrightarrow u } \right\|.\left\| {\overrightarrow v } \right\|}}\], \[\left\| {\overrightarrow u } \right\|\] means the length of the vector \[\overrightarrow u \].

**Complete step by step solution:**

We know that the angle between any two vectors is \[\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left\| {\overrightarrow u } \right\|.\left\| {\overrightarrow v } \right\|}}\].

Thus, we assume \[\overrightarrow u \] to be \[cx\widehat i - 6\widehat j + 3\widehat k\] and \[\overrightarrow v \] to be \[x\widehat i - 2\widehat j + 2cx\widehat k\].

Using this formula, we multiply the vectors using scalar multiplication.

\[

\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left\| {\overrightarrow u } \right\|.\left\| {\overrightarrow v } \right\|}} \\

\Rightarrow \cos \theta = \dfrac{{(cx)x + ( - 6)( - 2) + (3)(2cx)}}{{\sqrt {{{(cx)}^2} + {{( - 6)}^2} + {3^2}} .\sqrt {{x^2} + {{( - 2)}^2} + {{(2cx)}^2}} }} \\

\Rightarrow \cos \theta = \dfrac{{c{x^2} + 12 + 6cx}}{{\sqrt {{c^2}{x^2} + 36 + 9} .\sqrt {{x^2} + 4 + 4{c^2}{x^2}} }} \\

\Rightarrow \cos \theta = \dfrac{{c{x^2} + 12 + 6cx}}{{\sqrt {{c^2}{x^2} + 45} .\sqrt {(4{c^2} + 1){x^2} + 4} }} \\

\Rightarrow \cos \theta = \dfrac{{c{x^2} + 12 + 6cx}}{{\sqrt {({c^2}{x^2} + 45)((4{c^2} + 1){x^2} + 4)} }} \\

\]

We are told that we need an acute angle and we know that \[\cos \theta \] is positive between \[0^\circ\;\text{and}\;90^\circ \].

So, \[0^\circ < \theta < 90^\circ \]

\[\cos \theta \] is positive which means that the numerator is also positive. So, \[c{x^2} + 6cx + 12 > 0\]

Given the options we take c to be greater than zero, \[c > 0\]

We know that if a quadratic equation is greater than 0 then its discriminant is less than 0.

Therefore, discriminant for \[c{x^2} + 6cx + 12 < 0\]

Discriminant\[ = {b^2} - 4ac\] where \[a = c,b = 6c,c = 12\]

\[

= {(6c)^2} - 4 \times c \times 12 \\

= 36{c^2} - 48c \\

\]

Since, \[D < 0\]

\[ \Rightarrow 36{c^2} - 48c < 0\]

Dividing by \[12\] on both sides, we get

$\Rightarrow {3\text{c}^{2}-4\text{c}}<0 \\

\Rightarrow \text{c}\left(3\text{c}-{4}\right)<0 \\

\Rightarrow \text{c}<0,\;\text{and}\;\text{c}<\dfrac{4}{3} \\

\Rightarrow 0>\text{c}<\dfrac{4}{3}$

The set of values of c will be \[\left( {0,\dfrac{4}{3}} \right)\] and not \[[0,\dfrac{4}{3}]\] or \[[0,\dfrac{4}{3})\] according to the options given because the range of values of c lies between \[0\] and \[\dfrac{4}{3}\]which implies that c will not be equal to those values, so we use open brackets or first brackets to represent it. \[[0,\dfrac{4}{3}]\] implies that the range of values of c also includes \[0\]and \[\dfrac{4}{3}\]. \[[0,\dfrac{4}{3})\] implies that the range of values of c includes\[0\] but not \[\dfrac{4}{3}\].

Therefore, the set of values for which the angle between the vectors \[cx\widehat i - 6\widehat j + 3\widehat k\] and \[x\widehat i - 2\widehat j + 2cx\widehat k\] is acute for every \[x \in R\] is \[\left( {0,\dfrac{4}{3}} \right)\].

**Thus, the answer is option A.**

**Note:**This is a three dimensional vector as there are three coordinates given. We know that if a quadratic equation is greater than 0 then its discriminant is less than 0 but then it becomes a complex number, so we use the discriminant to find the roots of the equations.

Recently Updated Pages

Find the value of cos 260 circ sin 230 circ + tan 230 class 10 maths CBSE

How do you identify dfrac1cot2x + 1 class 10 maths CBSE

Evaluate the following sin 30circ cos 30circ class 10 maths CBSE

What will be the area of the triangle formed by the class 10 maths CBSE

Find the missing number in the pattern 2581117202326 class 10 maths CBSE

What is the standard form of y left 2x 3 right2 class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail

Name 10 Living and Non living things class 9 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths