
The root mean square velocity of the molecules in a sample of helium is ${{\left( \dfrac{5}{7} \right)}^{th}}$ that molecules in a sample of hydrogen. If the temperature of hydrogen gas is $0{}^\circ C$, that of helium sample is about:
A. $5.6{}^\circ C$
B. $4K$
C. $213{}^\circ C$
D. $100{}^\circ C$
Answer
568.5k+ views
Hint: We are given the relation between root mean square velocity of a helium sample and hydrogen sample and also the temperature of the hydrogen sample. We do know the equation for root mean square velocity. By using this equation we can find the root mean square velocity of hydrogen and helium and later we can relate them using the given relation. By substituting the known values in the root mean square velocity equation we will get the temperature of the helium sample.
Formula used:
\[\left( {{v}_{rms}} \right)=\sqrt{\dfrac{3RT}{M}}\]
Complete step-by-step answer:
In the question we are given the relation between root mean square velocity of a helium sample and hydrogen sample.
It says that,
${{\left( {{v}_{rms}} \right)}_{He}}=\dfrac{5}{7}{{\left( {{v}_{rms}} \right)}_{H}}$, were ‘${{\left( {{v}_{rms}} \right)}_{He}}$’ is the root mean square velocity of the helium sample and ‘\[{{\left( {{v}_{rms}} \right)}_{H}}\]’ is the root mean square velocity of the hydrogen sample.
We know that the equation for root mean square velocity is given as,
\[\left( {{v}_{rms}} \right)=\sqrt{\dfrac{3RT}{M}}\], were ‘R’ is the universal gas constant, ‘T’ is the temperature and ‘M’ is the mass.
Now we can write the root mean square velocity of the given helium sample as,
\[{{\left( {{v}_{rms}} \right)}_{He}}=\sqrt{\dfrac{3R{{T}_{He}}}{{{M}_{He}}}}\]
We know that mass of helium, ${{M}_{He}}=4kg$. Therefore,
\[\Rightarrow {{\left( {{v}_{rms}} \right)}_{He}}=\sqrt{\dfrac{3R{{T}_{He}}}{4}}\]
Now let us write the root mean square velocity equation of the given hydrogen sample.
\[{{\left( {{v}_{rms}} \right)}_{H}}=\sqrt{\dfrac{3R{{T}_{H}}}{{{M}_{H}}}}\]
In the question we are given the temperature of the hydrogen sample, ${{T}_{H}}=0{}^\circ C=273K$ and we know that the mass of hydrogen, ${{M}_{H}}=2kg$. Thus we get,
\[{{\left( {{v}_{rms}} \right)}_{H}}=\sqrt{\dfrac{3R\times 273}{2}}\]
Since we are given ${{\left( {{v}_{rms}} \right)}_{He}}=\dfrac{5}{7}{{\left( {{v}_{rms}} \right)}_{H}}$, we can write
$\Rightarrow \sqrt{\dfrac{3R{{T}_{He}}}{4}}=\left( \dfrac{5}{7} \right)\sqrt{\dfrac{3R\times 273}{2}}$
By solving this we will get,
$\Rightarrow \left( \dfrac{\left( \sqrt{\dfrac{3R{{T}_{He}}}{4}} \right)}{\left( \sqrt{\dfrac{3R\times 273}{2}} \right)} \right)=\left( \dfrac{5}{7} \right)$
$\Rightarrow \sqrt{\dfrac{\left( \dfrac{{{T}_{He}}}{4} \right)}{\left( \dfrac{273}{2} \right)}}=\left( \dfrac{5}{7} \right)$
$\Rightarrow \sqrt{\dfrac{\left( \dfrac{{{T}_{He}}}{2} \right)}{273}}=\left( \dfrac{5}{7} \right)$
By squaring both sides, we get
$\Rightarrow \dfrac{{{T}_{He}}}{2\times 273}=\dfrac{25}{49}$
From the above equation we get the temperature of the helium sample as,
$\Rightarrow {{T}_{He}}=\dfrac{25\times 2\times 273}{49}$
$\Rightarrow {{T}_{He}}=278.6K$
By converting this into Celsius, we get
$\Rightarrow {{T}_{He}}=5.6{}^\circ C$
Therefore the temperature of the helium sample is $5.6{}^\circ C$.
So, the correct answer is “Option A”.
Note: Root mean square velocity, also known as RMS velocity is the square root of the mean squares of the velocities of each individual gas molecule in a sample.
Here we take the mass of hydrogen as 2kg. This is because hydrogen never exists as an atom. It will always exist as ${{\text{H}}_{\text{2}}}$ molecule. Hence the mass is 2 kg.
Formula used:
\[\left( {{v}_{rms}} \right)=\sqrt{\dfrac{3RT}{M}}\]
Complete step-by-step answer:
In the question we are given the relation between root mean square velocity of a helium sample and hydrogen sample.
It says that,
${{\left( {{v}_{rms}} \right)}_{He}}=\dfrac{5}{7}{{\left( {{v}_{rms}} \right)}_{H}}$, were ‘${{\left( {{v}_{rms}} \right)}_{He}}$’ is the root mean square velocity of the helium sample and ‘\[{{\left( {{v}_{rms}} \right)}_{H}}\]’ is the root mean square velocity of the hydrogen sample.
We know that the equation for root mean square velocity is given as,
\[\left( {{v}_{rms}} \right)=\sqrt{\dfrac{3RT}{M}}\], were ‘R’ is the universal gas constant, ‘T’ is the temperature and ‘M’ is the mass.
Now we can write the root mean square velocity of the given helium sample as,
\[{{\left( {{v}_{rms}} \right)}_{He}}=\sqrt{\dfrac{3R{{T}_{He}}}{{{M}_{He}}}}\]
We know that mass of helium, ${{M}_{He}}=4kg$. Therefore,
\[\Rightarrow {{\left( {{v}_{rms}} \right)}_{He}}=\sqrt{\dfrac{3R{{T}_{He}}}{4}}\]
Now let us write the root mean square velocity equation of the given hydrogen sample.
\[{{\left( {{v}_{rms}} \right)}_{H}}=\sqrt{\dfrac{3R{{T}_{H}}}{{{M}_{H}}}}\]
In the question we are given the temperature of the hydrogen sample, ${{T}_{H}}=0{}^\circ C=273K$ and we know that the mass of hydrogen, ${{M}_{H}}=2kg$. Thus we get,
\[{{\left( {{v}_{rms}} \right)}_{H}}=\sqrt{\dfrac{3R\times 273}{2}}\]
Since we are given ${{\left( {{v}_{rms}} \right)}_{He}}=\dfrac{5}{7}{{\left( {{v}_{rms}} \right)}_{H}}$, we can write
$\Rightarrow \sqrt{\dfrac{3R{{T}_{He}}}{4}}=\left( \dfrac{5}{7} \right)\sqrt{\dfrac{3R\times 273}{2}}$
By solving this we will get,
$\Rightarrow \left( \dfrac{\left( \sqrt{\dfrac{3R{{T}_{He}}}{4}} \right)}{\left( \sqrt{\dfrac{3R\times 273}{2}} \right)} \right)=\left( \dfrac{5}{7} \right)$
$\Rightarrow \sqrt{\dfrac{\left( \dfrac{{{T}_{He}}}{4} \right)}{\left( \dfrac{273}{2} \right)}}=\left( \dfrac{5}{7} \right)$
$\Rightarrow \sqrt{\dfrac{\left( \dfrac{{{T}_{He}}}{2} \right)}{273}}=\left( \dfrac{5}{7} \right)$
By squaring both sides, we get
$\Rightarrow \dfrac{{{T}_{He}}}{2\times 273}=\dfrac{25}{49}$
From the above equation we get the temperature of the helium sample as,
$\Rightarrow {{T}_{He}}=\dfrac{25\times 2\times 273}{49}$
$\Rightarrow {{T}_{He}}=278.6K$
By converting this into Celsius, we get
$\Rightarrow {{T}_{He}}=5.6{}^\circ C$
Therefore the temperature of the helium sample is $5.6{}^\circ C$.
So, the correct answer is “Option A”.
Note: Root mean square velocity, also known as RMS velocity is the square root of the mean squares of the velocities of each individual gas molecule in a sample.
Here we take the mass of hydrogen as 2kg. This is because hydrogen never exists as an atom. It will always exist as ${{\text{H}}_{\text{2}}}$ molecule. Hence the mass is 2 kg.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

