Answer
Verified
435.3k+ views
Hint: We use the relation between resistance and resistivity to find the resistance of the material. Then we use the ohm's law to find the voltage. Dividing the voltage with the length of wire, voltage drop per meter length of wire can be found.
Formula used:
$\rho = \dfrac{{RA}}{l}$
Ohm's law:$V = iR$
Here,
Resistance is represented by $R$
Resistivity is represented by $\rho $
Length of wire is represented by $l$
Area of cross-section is represented by $A$
Voltage is represented by $V$
Current is represented by $i$
Complete step by step answer:
Resistivity is the electrical resistance of a material of unit area of unit length. Resistivity is a constant value for a given material.
Resistivity is equal to
$\rho = \dfrac{{RA}}{l}$
From which we can find resistance
$R = \dfrac{{\rho l}}{A}$
Given, length of the potentiometer, $l=1m$, $\rho = 5 \times {10^{ - 6}}\Omega m$ and $A = 5 \times {10^{ - 6}}{m^2}$. Putting these values in the formula, we find the resistance.
$R = \dfrac{{5 \times {{10}^{ - 6}} \times 1}}{{5 \times {{10}^{ - 6}}}}$
Given, $i=0.2A$
From ohm's law
$ V = iR $
$\implies V = \dfrac{{0.2 \times 5 \times {{10}^{ - 6}} \times 1}}{{5 \times {{10}^{ - 6}}}} $
$\implies V = 0.2V $
To find the voltage drop per meter we simply divide the voltage by the length
$V = \dfrac{{0.2}}{1}V{m^{ - 1}} = 0.2V{m^{ - 1}}$
Hence the voltage drop per meter of wire is $0.2V{m^{ - 1}}$.
So, the correct answer is “Option D”.
Note:
The potential drop for one meter or material is also called the potential gradient. It is the potential difference between two points on the wire that are one meter apart. Hence by dividing voltage by the length of wire we find the potential gradient. The units are volts per meter.
Resistivity depends on the type of material. The resistivity of two wires of the same material is always constant. Resistivity does not depend on the mass or length of the substance; it is a fixed value for different materials (like specific heat capacity) hence it is an intrinsic property. It purely depends on the nature of the element.
Formula used:
$\rho = \dfrac{{RA}}{l}$
Ohm's law:$V = iR$
Here,
Resistance is represented by $R$
Resistivity is represented by $\rho $
Length of wire is represented by $l$
Area of cross-section is represented by $A$
Voltage is represented by $V$
Current is represented by $i$
Complete step by step answer:
Resistivity is the electrical resistance of a material of unit area of unit length. Resistivity is a constant value for a given material.
Resistivity is equal to
$\rho = \dfrac{{RA}}{l}$
From which we can find resistance
$R = \dfrac{{\rho l}}{A}$
Given, length of the potentiometer, $l=1m$, $\rho = 5 \times {10^{ - 6}}\Omega m$ and $A = 5 \times {10^{ - 6}}{m^2}$. Putting these values in the formula, we find the resistance.
$R = \dfrac{{5 \times {{10}^{ - 6}} \times 1}}{{5 \times {{10}^{ - 6}}}}$
Given, $i=0.2A$
From ohm's law
$ V = iR $
$\implies V = \dfrac{{0.2 \times 5 \times {{10}^{ - 6}} \times 1}}{{5 \times {{10}^{ - 6}}}} $
$\implies V = 0.2V $
To find the voltage drop per meter we simply divide the voltage by the length
$V = \dfrac{{0.2}}{1}V{m^{ - 1}} = 0.2V{m^{ - 1}}$
Hence the voltage drop per meter of wire is $0.2V{m^{ - 1}}$.
So, the correct answer is “Option D”.
Note:
The potential drop for one meter or material is also called the potential gradient. It is the potential difference between two points on the wire that are one meter apart. Hence by dividing voltage by the length of wire we find the potential gradient. The units are volts per meter.
Resistivity depends on the type of material. The resistivity of two wires of the same material is always constant. Resistivity does not depend on the mass or length of the substance; it is a fixed value for different materials (like specific heat capacity) hence it is an intrinsic property. It purely depends on the nature of the element.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The largest tea producing country in the world is A class 10 social science CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE