Answer
Verified
429.3k+ views
Hint:Identify the formula of the resistance that it must have the parameters given in the options. From that find the parameter that is directly proportional to the resistance and the parameter that is inversely proportional to its resistance.
Useful formula:
The formula of the resistance of the conductor is given by
$R = \dfrac{{\rho L}}{A}$
Where $R$ is the specific resistance of the conductor, $\rho $ is the density of the conductor, $L$ is its length and $A$ is the cross sectional area of the conductor.
Complete step by step solution:
The resistance is the opposition to the flow of the current. It varies with the type of the material. By using the formula of the resistance,
$R = \dfrac{{\rho L}}{A}$
By finding the parameters and its relation with that of the resistance.
$R\alpha \rho L$
From the above proportionality, it is clear that the resistance is directly proportional to the specific resistance and the length of the conductor. If the resistivity and the length increases, then the resistance also increases.
$R\alpha \dfrac{1}{A}$
But the resistance is inversely proportional to the cross sectional area of the conductor. If the conductor possesses a greater cross sectional area, then its resistance will be less.
Thus the option (A) is correct.
Note:The term mentioned in the formula, specific resistance is the resistance in the conductor per unit length and per unit cross sectional area. It is also specified by the term resistivity. If the material of the conductor has the low resistivity, then it readily allows the electric current to pass through.
Useful formula:
The formula of the resistance of the conductor is given by
$R = \dfrac{{\rho L}}{A}$
Where $R$ is the specific resistance of the conductor, $\rho $ is the density of the conductor, $L$ is its length and $A$ is the cross sectional area of the conductor.
Complete step by step solution:
The resistance is the opposition to the flow of the current. It varies with the type of the material. By using the formula of the resistance,
$R = \dfrac{{\rho L}}{A}$
By finding the parameters and its relation with that of the resistance.
$R\alpha \rho L$
From the above proportionality, it is clear that the resistance is directly proportional to the specific resistance and the length of the conductor. If the resistivity and the length increases, then the resistance also increases.
$R\alpha \dfrac{1}{A}$
But the resistance is inversely proportional to the cross sectional area of the conductor. If the conductor possesses a greater cross sectional area, then its resistance will be less.
Thus the option (A) is correct.
Note:The term mentioned in the formula, specific resistance is the resistance in the conductor per unit length and per unit cross sectional area. It is also specified by the term resistivity. If the material of the conductor has the low resistivity, then it readily allows the electric current to pass through.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE