The reason for greater range of oxidation states in actinoids is attributed to:
A . 4f and 5d levels being close in energies.
B . The radioactive nature of actinoids.
C . Actinoid contraction.
D . 5f, 6d and 7s levels having comparable energies.
Answer
335.1k+ views
Hint:
Actinides are F-block elements(atomic number 89 to103) with the general electronic configuration of outermost shell is \[\left[ {{\text{Rn}}} \right]{\text{5}}{{\text{f}}^{{\text{1 - 14}}}}{\text{6}}{{\text{d}}^{{\text{0 - 1}}}}{\text{7}}{{\text{s}}^{\text{2}}}\]. Where the last electron enters to the inner 5f-orbital of the actinides. Actinides are also known as rare earth metals.
Complete step by step answer:
All actinides have atomic numbers greater than 83 i.e. why actinides are generally radioactive and unstable. Due to radioactivity these metals are also toxic.
Due to the low screening power of f-orbitals, addition of electrons to the 5f-orbital results in an increase of effective nuclear charge which causes the reduction of size of actinides and similarity of their chemical and physical properties. This effect is called actinoid contraction.
Now according to the Aufbau principle(L+S value) the energy order of the orbitals should be \[5f < 6d < 7s.\]but due to the more diffuse orbitals their energy becomes more or less the same. As a result, electrons can be excited easily . Due to this reason actinides shows greater range of oxidation states. But if we consider lanthanides due to the comparatively small size of 4f orbital they have a limited number of oxidation states.
So, the correct answer is D.
Note:
The orbitals of actinides are more diffuse compared to lanthanides. The energy difference of orbitals is very low for actinides.
Actinides are F-block elements(atomic number 89 to103) with the general electronic configuration of outermost shell is \[\left[ {{\text{Rn}}} \right]{\text{5}}{{\text{f}}^{{\text{1 - 14}}}}{\text{6}}{{\text{d}}^{{\text{0 - 1}}}}{\text{7}}{{\text{s}}^{\text{2}}}\]. Where the last electron enters to the inner 5f-orbital of the actinides. Actinides are also known as rare earth metals.
Complete step by step answer:
All actinides have atomic numbers greater than 83 i.e. why actinides are generally radioactive and unstable. Due to radioactivity these metals are also toxic.
Due to the low screening power of f-orbitals, addition of electrons to the 5f-orbital results in an increase of effective nuclear charge which causes the reduction of size of actinides and similarity of their chemical and physical properties. This effect is called actinoid contraction.
Now according to the Aufbau principle(L+S value) the energy order of the orbitals should be \[5f < 6d < 7s.\]but due to the more diffuse orbitals their energy becomes more or less the same. As a result, electrons can be excited easily . Due to this reason actinides shows greater range of oxidation states. But if we consider lanthanides due to the comparatively small size of 4f orbital they have a limited number of oxidation states.
So, the correct answer is D.
Note:
The orbitals of actinides are more diffuse compared to lanthanides. The energy difference of orbitals is very low for actinides.
Last updated date: 24th Sep 2023
•
Total views: 335.1k
•
Views today: 10.35k
Recently Updated Pages
Difference between hardware and software

What is the Full Form of DNA and RNA

10 Advantages and Disadvantages of Plastic

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the IUPAC name of CH3CH CH COOH A 2Butenoic class 11 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

The dimensions of potential gradient are A MLT 3A 1 class 11 physics CBSE

Define electric potential and write down its dimen class 9 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE
