The product of matrices $A = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$and $B = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$ is null matrix if $\theta - \phi = ?$
$
a.{\text{ }}2n\pi ,n \in Z \\
b.{\text{ }}n\dfrac{\pi }{2},n \in Z \\
c.{\text{ }}\left( {2n + 1} \right)\dfrac{\pi }{2},n \in Z \\
d.{\text{ }}n\pi ,n \in Z \\
$
Last updated date: 26th Mar 2023
•
Total views: 309.9k
•
Views today: 5.86k
Answer
309.9k+ views
Hint- Null matrix is a matrix if all the elements of the matrix are zero. Multiplication of two matrices is given as a null matrix so the value of multiplication will be equal to Zero matrix.
Given matrix are
$A = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$, $B = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now find out the product of matrices i.e.$\left( {AB} \right)$
$\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now apply the matrix multiplication rule, both matrices have 2 rows and 2 columns so the multiplication of these two matrices also have two rows and two columns.
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta {{\cos }^2}\phi + \cos \theta \sin \theta \cos \phi \sin \phi }&{{{\cos }^2}\theta \cos \phi \sin \phi + \cos \theta \sin \theta {{\sin }^2}\phi } \\
{\cos \theta \sin \theta {{\cos }^2}\phi + {{\sin }^2}\theta \cos \phi \sin \phi }&{\cos \theta \sin \theta \cos \phi \sin \phi + {{\sin }^2}\theta {{\sin }^2}\phi }
\end{array}} \right]\]
Now this above matrix is also written as
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\cos \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)} \\
{\sin \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\sin \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}
\end{array}} \right]\]
Now as we know $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ so use this property we have
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right]\]
Now we have to convert the matrix to a null matrix, so we have to convert all the elements of the above matrix to zero.
Therefore substitute \[\cos \left( {\theta - \phi } \right) = 0\]………….. (1)
\[ \Rightarrow \left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right]\]
Now from equation (1)
We know that the value of cosine is zero for\[\left( {2n + 1} \right)\dfrac{\pi }{2}\], where \[n \in Z\]
\[\cos \left( {\theta - \phi } \right) = 0 = \cos \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], where \[n \in Z\]
So, on comparing
\[\left( {\theta - \phi } \right) = \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], \[n \in Z\]
Hence option (c) is correct.
Note- In such types of questions the key concept we have to remember is that the null matrix is a matrix such that all the elements of the matrix are zero, so in this questions first find out the matrix multiplication, then simplify the matrix using basic trigonometric properties which is stated above, then substitute one of the element to zero which is common in all the elements of the matrix AB, then use the property of cosine which is stated above, we will get the required null matrix.
Given matrix are
$A = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$, $B = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now find out the product of matrices i.e.$\left( {AB} \right)$
$\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now apply the matrix multiplication rule, both matrices have 2 rows and 2 columns so the multiplication of these two matrices also have two rows and two columns.
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta {{\cos }^2}\phi + \cos \theta \sin \theta \cos \phi \sin \phi }&{{{\cos }^2}\theta \cos \phi \sin \phi + \cos \theta \sin \theta {{\sin }^2}\phi } \\
{\cos \theta \sin \theta {{\cos }^2}\phi + {{\sin }^2}\theta \cos \phi \sin \phi }&{\cos \theta \sin \theta \cos \phi \sin \phi + {{\sin }^2}\theta {{\sin }^2}\phi }
\end{array}} \right]\]
Now this above matrix is also written as
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\cos \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)} \\
{\sin \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\sin \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}
\end{array}} \right]\]
Now as we know $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ so use this property we have
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right]\]
Now we have to convert the matrix to a null matrix, so we have to convert all the elements of the above matrix to zero.
Therefore substitute \[\cos \left( {\theta - \phi } \right) = 0\]………….. (1)
\[ \Rightarrow \left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right]\]
Now from equation (1)
We know that the value of cosine is zero for\[\left( {2n + 1} \right)\dfrac{\pi }{2}\], where \[n \in Z\]
\[\cos \left( {\theta - \phi } \right) = 0 = \cos \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], where \[n \in Z\]
So, on comparing
\[\left( {\theta - \phi } \right) = \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], \[n \in Z\]
Hence option (c) is correct.
Note- In such types of questions the key concept we have to remember is that the null matrix is a matrix such that all the elements of the matrix are zero, so in this questions first find out the matrix multiplication, then simplify the matrix using basic trigonometric properties which is stated above, then substitute one of the element to zero which is common in all the elements of the matrix AB, then use the property of cosine which is stated above, we will get the required null matrix.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
