Answer
Verified
494.4k+ views
Hint- Null matrix is a matrix if all the elements of the matrix are zero. Multiplication of two matrices is given as a null matrix so the value of multiplication will be equal to Zero matrix.
Given matrix are
$A = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$, $B = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now find out the product of matrices i.e.$\left( {AB} \right)$
$\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now apply the matrix multiplication rule, both matrices have 2 rows and 2 columns so the multiplication of these two matrices also have two rows and two columns.
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta {{\cos }^2}\phi + \cos \theta \sin \theta \cos \phi \sin \phi }&{{{\cos }^2}\theta \cos \phi \sin \phi + \cos \theta \sin \theta {{\sin }^2}\phi } \\
{\cos \theta \sin \theta {{\cos }^2}\phi + {{\sin }^2}\theta \cos \phi \sin \phi }&{\cos \theta \sin \theta \cos \phi \sin \phi + {{\sin }^2}\theta {{\sin }^2}\phi }
\end{array}} \right]\]
Now this above matrix is also written as
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\cos \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)} \\
{\sin \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\sin \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}
\end{array}} \right]\]
Now as we know $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ so use this property we have
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right]\]
Now we have to convert the matrix to a null matrix, so we have to convert all the elements of the above matrix to zero.
Therefore substitute \[\cos \left( {\theta - \phi } \right) = 0\]………….. (1)
\[ \Rightarrow \left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right]\]
Now from equation (1)
We know that the value of cosine is zero for\[\left( {2n + 1} \right)\dfrac{\pi }{2}\], where \[n \in Z\]
\[\cos \left( {\theta - \phi } \right) = 0 = \cos \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], where \[n \in Z\]
So, on comparing
\[\left( {\theta - \phi } \right) = \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], \[n \in Z\]
Hence option (c) is correct.
Note- In such types of questions the key concept we have to remember is that the null matrix is a matrix such that all the elements of the matrix are zero, so in this questions first find out the matrix multiplication, then simplify the matrix using basic trigonometric properties which is stated above, then substitute one of the element to zero which is common in all the elements of the matrix AB, then use the property of cosine which is stated above, we will get the required null matrix.
Given matrix are
$A = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$, $B = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now find out the product of matrices i.e.$\left( {AB} \right)$
$\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now apply the matrix multiplication rule, both matrices have 2 rows and 2 columns so the multiplication of these two matrices also have two rows and two columns.
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta {{\cos }^2}\phi + \cos \theta \sin \theta \cos \phi \sin \phi }&{{{\cos }^2}\theta \cos \phi \sin \phi + \cos \theta \sin \theta {{\sin }^2}\phi } \\
{\cos \theta \sin \theta {{\cos }^2}\phi + {{\sin }^2}\theta \cos \phi \sin \phi }&{\cos \theta \sin \theta \cos \phi \sin \phi + {{\sin }^2}\theta {{\sin }^2}\phi }
\end{array}} \right]\]
Now this above matrix is also written as
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\cos \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)} \\
{\sin \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\sin \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}
\end{array}} \right]\]
Now as we know $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ so use this property we have
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right]\]
Now we have to convert the matrix to a null matrix, so we have to convert all the elements of the above matrix to zero.
Therefore substitute \[\cos \left( {\theta - \phi } \right) = 0\]………….. (1)
\[ \Rightarrow \left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right]\]
Now from equation (1)
We know that the value of cosine is zero for\[\left( {2n + 1} \right)\dfrac{\pi }{2}\], where \[n \in Z\]
\[\cos \left( {\theta - \phi } \right) = 0 = \cos \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], where \[n \in Z\]
So, on comparing
\[\left( {\theta - \phi } \right) = \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], \[n \in Z\]
Hence option (c) is correct.
Note- In such types of questions the key concept we have to remember is that the null matrix is a matrix such that all the elements of the matrix are zero, so in this questions first find out the matrix multiplication, then simplify the matrix using basic trigonometric properties which is stated above, then substitute one of the element to zero which is common in all the elements of the matrix AB, then use the property of cosine which is stated above, we will get the required null matrix.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE