# The product of matrices $A = \left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\

{\cos \theta \sin \theta }&{{{\sin }^2}\theta }

\end{array}} \right]$and $B = \left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\

{\cos \phi \sin \phi }&{{{\sin }^2}\phi }

\end{array}} \right]$ is null matrix if $\theta - \phi = ?$

$

a.{\text{ }}2n\pi ,n \in Z \\

b.{\text{ }}n\dfrac{\pi }{2},n \in Z \\

c.{\text{ }}\left( {2n + 1} \right)\dfrac{\pi }{2},n \in Z \\

d.{\text{ }}n\pi ,n \in Z \\

$

Answer

Verified

366k+ views

Hint- Null matrix is a matrix if all the elements of the matrix are zero. Multiplication of two matrices is given as a null matrix so the value of multiplication will be equal to Zero matrix.

Given matrix are

$A = \left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\

{\cos \theta \sin \theta }&{{{\sin }^2}\theta }

\end{array}} \right]$, $B = \left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\

{\cos \phi \sin \phi }&{{{\sin }^2}\phi }

\end{array}} \right]$

Now find out the product of matrices i.e.$\left( {AB} \right)$

$\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\

{\cos \theta \sin \theta }&{{{\sin }^2}\theta }

\end{array}} \right]\left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\

{\cos \phi \sin \phi }&{{{\sin }^2}\phi }

\end{array}} \right]$

Now apply the matrix multiplication rule, both matrices have 2 rows and 2 columns so the multiplication of these two matrices also have two rows and two columns.

\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\theta {{\cos }^2}\phi + \cos \theta \sin \theta \cos \phi \sin \phi }&{{{\cos }^2}\theta \cos \phi \sin \phi + \cos \theta \sin \theta {{\sin }^2}\phi } \\

{\cos \theta \sin \theta {{\cos }^2}\phi + {{\sin }^2}\theta \cos \phi \sin \phi }&{\cos \theta \sin \theta \cos \phi \sin \phi + {{\sin }^2}\theta {{\sin }^2}\phi }

\end{array}} \right]\]

Now this above matrix is also written as

\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}

{\cos \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\cos \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)} \\

{\sin \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\sin \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}

\end{array}} \right]\]

Now as we know $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ so use this property we have

\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}

{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\

{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}

\end{array}} \right]\]

Now we have to convert the matrix to a null matrix, so we have to convert all the elements of the above matrix to zero.

Therefore substitute \[\cos \left( {\theta - \phi } \right) = 0\]………….. (1)

\[ \Rightarrow \left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}

{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\

{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

0&0 \\

0&0

\end{array}} \right]\]

Now from equation (1)

We know that the value of cosine is zero for\[\left( {2n + 1} \right)\dfrac{\pi }{2}\], where \[n \in Z\]

\[\cos \left( {\theta - \phi } \right) = 0 = \cos \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], where \[n \in Z\]

So, on comparing

\[\left( {\theta - \phi } \right) = \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], \[n \in Z\]

Hence option (c) is correct.

Note- In such types of questions the key concept we have to remember is that the null matrix is a matrix such that all the elements of the matrix are zero, so in this questions first find out the matrix multiplication, then simplify the matrix using basic trigonometric properties which is stated above, then substitute one of the element to zero which is common in all the elements of the matrix AB, then use the property of cosine which is stated above, we will get the required null matrix.

Given matrix are

$A = \left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\

{\cos \theta \sin \theta }&{{{\sin }^2}\theta }

\end{array}} \right]$, $B = \left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\

{\cos \phi \sin \phi }&{{{\sin }^2}\phi }

\end{array}} \right]$

Now find out the product of matrices i.e.$\left( {AB} \right)$

$\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\

{\cos \theta \sin \theta }&{{{\sin }^2}\theta }

\end{array}} \right]\left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\

{\cos \phi \sin \phi }&{{{\sin }^2}\phi }

\end{array}} \right]$

Now apply the matrix multiplication rule, both matrices have 2 rows and 2 columns so the multiplication of these two matrices also have two rows and two columns.

\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}

{{{\cos }^2}\theta {{\cos }^2}\phi + \cos \theta \sin \theta \cos \phi \sin \phi }&{{{\cos }^2}\theta \cos \phi \sin \phi + \cos \theta \sin \theta {{\sin }^2}\phi } \\

{\cos \theta \sin \theta {{\cos }^2}\phi + {{\sin }^2}\theta \cos \phi \sin \phi }&{\cos \theta \sin \theta \cos \phi \sin \phi + {{\sin }^2}\theta {{\sin }^2}\phi }

\end{array}} \right]\]

Now this above matrix is also written as

\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}

{\cos \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\cos \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)} \\

{\sin \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\sin \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}

\end{array}} \right]\]

Now as we know $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ so use this property we have

\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}

{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\

{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}

\end{array}} \right]\]

Now we have to convert the matrix to a null matrix, so we have to convert all the elements of the above matrix to zero.

Therefore substitute \[\cos \left( {\theta - \phi } \right) = 0\]………….. (1)

\[ \Rightarrow \left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}

{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\

{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

0&0 \\

0&0

\end{array}} \right]\]

Now from equation (1)

We know that the value of cosine is zero for\[\left( {2n + 1} \right)\dfrac{\pi }{2}\], where \[n \in Z\]

\[\cos \left( {\theta - \phi } \right) = 0 = \cos \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], where \[n \in Z\]

So, on comparing

\[\left( {\theta - \phi } \right) = \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], \[n \in Z\]

Hence option (c) is correct.

Note- In such types of questions the key concept we have to remember is that the null matrix is a matrix such that all the elements of the matrix are zero, so in this questions first find out the matrix multiplication, then simplify the matrix using basic trigonometric properties which is stated above, then substitute one of the element to zero which is common in all the elements of the matrix AB, then use the property of cosine which is stated above, we will get the required null matrix.

Last updated date: 03rd Oct 2023

•

Total views: 366k

•

Views today: 4.66k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Is current density a scalar or a vector quantity class 12 physics JEE_Main

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE