Answer
Verified
435.9k+ views
Hint:
Use the basic rule of the probability. In probability we use three basic rules that is addition, multiplication, and complement rules. The addition rule is used to find the probability of event A or event B happening such as ${\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right) = {\rm{P}}\left( {\rm{A}} \right) + {\rm{P}}\left( {\rm{B}} \right) - {\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)$.
Complete step by step solution:
We know from the question that the probability that A can win a race is ${\rm{P}}\left( {\rm{A}} \right) = \dfrac{3}{8}$ and the probability that B can win it is ${\rm{P}}\left( {\rm{B}} \right) = \dfrac{1}{8}$.
Assume that the both cannot win the race together as ${\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right) = 0$.
Now, from the below relation we can calculate the probability that one of them will win the race.
${\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right) = {\rm{P}}\left( {\rm{A}} \right) + {\rm{P}}\left( {\rm{B}} \right) - {\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)$
Substitute the values ${\rm{P}}\left( {\rm{A}} \right)$ as $\dfrac{3}{8}$, ${\rm{P}}\left( {\rm{B}} \right)$ as $\dfrac{1}{8}$ and ${\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)$ as 0 in the above equation.
$
{\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right) = {\rm{P}}\left( {\rm{A}} \right) + {\rm{P}}\left( {\rm{B}} \right) - {\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)\\
= \dfrac{3}{8} + \dfrac{1}{6} - 0\\
= \dfrac{{18 + 8}}{{48}}\\
= \dfrac{{13}}{{24}}
$
Hence, from the above result we can say the probability that one of them will win the race is $\dfrac{{13}}{{24}}$ and the option (C) is correct.
Additional Information:
The formula ${\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right) = {\rm{P}}\left( {\rm{A}} \right) + {\rm{P}}\left( {\rm{B}} \right) - {\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)$ is very popular when the questions of venn diagram with probability is asked in exams. So make sure that the concept of this type of problem is clear. Venn diagram problems look tricky but are very simple with its help.
Note:
Make sure that the assumption of both not A and B not winning the race is necessary to solve the question. Here we use the basic probability rules, if there are two events like A and B then ${\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right) = {\rm{P}}\left( {\rm{A}} \right) + {\rm{P}}\left( {\rm{B}} \right) - {\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)$. Just a method to remember this formula is, it’s similar to the formula of number of elements in the union of two sets.
Use the basic rule of the probability. In probability we use three basic rules that is addition, multiplication, and complement rules. The addition rule is used to find the probability of event A or event B happening such as ${\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right) = {\rm{P}}\left( {\rm{A}} \right) + {\rm{P}}\left( {\rm{B}} \right) - {\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)$.
Complete step by step solution:
We know from the question that the probability that A can win a race is ${\rm{P}}\left( {\rm{A}} \right) = \dfrac{3}{8}$ and the probability that B can win it is ${\rm{P}}\left( {\rm{B}} \right) = \dfrac{1}{8}$.
Assume that the both cannot win the race together as ${\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right) = 0$.
Now, from the below relation we can calculate the probability that one of them will win the race.
${\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right) = {\rm{P}}\left( {\rm{A}} \right) + {\rm{P}}\left( {\rm{B}} \right) - {\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)$
Substitute the values ${\rm{P}}\left( {\rm{A}} \right)$ as $\dfrac{3}{8}$, ${\rm{P}}\left( {\rm{B}} \right)$ as $\dfrac{1}{8}$ and ${\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)$ as 0 in the above equation.
$
{\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right) = {\rm{P}}\left( {\rm{A}} \right) + {\rm{P}}\left( {\rm{B}} \right) - {\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)\\
= \dfrac{3}{8} + \dfrac{1}{6} - 0\\
= \dfrac{{18 + 8}}{{48}}\\
= \dfrac{{13}}{{24}}
$
Hence, from the above result we can say the probability that one of them will win the race is $\dfrac{{13}}{{24}}$ and the option (C) is correct.
Additional Information:
The formula ${\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right) = {\rm{P}}\left( {\rm{A}} \right) + {\rm{P}}\left( {\rm{B}} \right) - {\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)$ is very popular when the questions of venn diagram with probability is asked in exams. So make sure that the concept of this type of problem is clear. Venn diagram problems look tricky but are very simple with its help.
Note:
Make sure that the assumption of both not A and B not winning the race is necessary to solve the question. Here we use the basic probability rules, if there are two events like A and B then ${\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right) = {\rm{P}}\left( {\rm{A}} \right) + {\rm{P}}\left( {\rm{B}} \right) - {\rm{P}}\left( {{\rm{A}} \cap {\rm{B}}} \right)$. Just a method to remember this formula is, it’s similar to the formula of number of elements in the union of two sets.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE