Answer
Verified
418.2k+ views
Hint: To calculate the total pressure of the gas, Dalton law of partial pressure is applied. The pressure in the third chamber is the total pressure which is the sum of both the pressure pressure exerted by two chambers
Complete step by step answer:
Given,
${P_1}$ is 2atm
${P_2}$ is 3atm
${V_1}$ is 1 ltr
${V_2}$ is 2 ltr
${V_{Total}}$ is 2 ltr
The Dalton law of partial pressure states that the total pressure exerted by the gaseous mixture is equal to the sum total of the individual partial pressure exerted by the gases molecule.
Example: There are two gases molecule (gas A and gas B) present having individual value of partial pressure. The total pressure exerted by the mixture of gas A and gas B is equal to the sum of the individual partial pressure exerted by both gas A and B.
The pressure exerted by the individual gas molecule present in a mixture of gases is known as partial pressure.
Dalton's law formula is given as shown below.
${P_{total}} = {P_1} + {P_2} + {P_3}$ ${P_n}$
The formula to calculate the total partial pressure is shown below.
${P_{total}} = {P_1} + {P_2}$
${P_{total}} = 2 + 3$
$\Rightarrow {P_{total}} = 5$
Thus, the total pressure after mixing of two gases present in the chamber is 5 atm.
So, the correct answer is Option A.
Note: Dalton’s law of partial pressure helps in determining the pressure of dry gas only. Unless the individual gases present do not react chemically with each other they do not affect the pressure.
Complete step by step answer:
Given,
${P_1}$ is 2atm
${P_2}$ is 3atm
${V_1}$ is 1 ltr
${V_2}$ is 2 ltr
${V_{Total}}$ is 2 ltr
The Dalton law of partial pressure states that the total pressure exerted by the gaseous mixture is equal to the sum total of the individual partial pressure exerted by the gases molecule.
Example: There are two gases molecule (gas A and gas B) present having individual value of partial pressure. The total pressure exerted by the mixture of gas A and gas B is equal to the sum of the individual partial pressure exerted by both gas A and B.
The pressure exerted by the individual gas molecule present in a mixture of gases is known as partial pressure.
Dalton's law formula is given as shown below.
${P_{total}} = {P_1} + {P_2} + {P_3}$ ${P_n}$
The formula to calculate the total partial pressure is shown below.
${P_{total}} = {P_1} + {P_2}$
${P_{total}} = 2 + 3$
$\Rightarrow {P_{total}} = 5$
Thus, the total pressure after mixing of two gases present in the chamber is 5 atm.
So, the correct answer is Option A.
Note: Dalton’s law of partial pressure helps in determining the pressure of dry gas only. Unless the individual gases present do not react chemically with each other they do not affect the pressure.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell