
The pressure exerted by of methane gas in a vessel at (Atomic masses:$\text{C}=12\cdot 01,\text{ H}=1\cdot 01$ and$\text{R}=8\cdot 314\text{ J}{{\text{K}}^{-1}}\text{ mo}{{\text{l}}^{-1}}$).
A. 215216 Pa
B. 13409 Pa
C. 41684 Pa
D. 31684Pa
Answer
564.9k+ views
Hint: In this question, temperature, volume and pressure given. The equation which gives the simultaneous effect of pressure and temperature on the volume of a gas is known as the ideal gas equation.
Formula used:
$ PV = nRT$
Complete step by step answer:
In the given statement, the weight of methane gas molecule is$6\cdot 0\text{g}$
$\text{W}=6\cdot 0\text{g}$ (given)
Volume of methane molecule$0\cdot 003\text{ }{{\text{m}}^{3}}$
$\text{V}=0\cdot 003\text{ }{{\text{m}}^{3}}$
Temperature $=129{}^\circ \text{C}$
$129+273=402\text{K}$
Applying the ideal gas equation
PV = nRT
Where,
P = Pressure
V = Volume
n = No. of moles
R = Gas constant$8\cdot 314\text{J}{{\text{K}}^{-1}}\text{ mo}{{\text{l}}^{-1}}$
T = Temperature
PV = nRT where,$\text{n}=\dfrac{\text{W}}{\text{M}}$
Here, W= weight of molecule and M = molecular mass
Molecular mass of methane molecule$=12\cdot 01+4\cdot 04=16\cdot 05$
$\text{PV}=\dfrac{\text{W}}{\text{M}}\text{RT}$
Put all the values in equation
$\text{P}\times \text{0}\cdot 03=\dfrac{6\times 8\cdot 314\times 402}{16\cdot 05}$
$\text{P}=\dfrac{6\times 8\cdot 314\times 402}{16\cdot 05\times 0\cdot 003}$
On solving we get
$41647\cdot 7\text{ Pa}\cong \text{41648}$.
So, the correct answer is “Option C”.
Note:
The terms in the ideal gas equation should be clear. The value of gas constant must be known .No gas in the actual condition shows the ideal behavior that is known as real gas.
In actual practice no gas behaves as ideal gas . All the gas shows deviation. There is change in pressure and volume of gas. An ideal gas equation changed into a real gas or Vander wall gas equation.
Where V is the volume of the gas, R is the universal gas constant, T is temperature, P is pressure, and V is volume. a and b are constant terms. When the volume V is large, b becomes negligible in comparison with V, a/V2 becomes negligible with respect to P, and the van der Waals equation reduces to the ideal gas law, PV=nRT.
$\left[ \text{P}+\dfrac{\text{a}{{\text{n}}^{2}}}{{{\text{v}}^{2}}} \right]\left( \text{V}-\text{nb} \right)=\text{nRT}$
Formula used:
$ PV = nRT$
Complete step by step answer:
In the given statement, the weight of methane gas molecule is$6\cdot 0\text{g}$
$\text{W}=6\cdot 0\text{g}$ (given)
Volume of methane molecule$0\cdot 003\text{ }{{\text{m}}^{3}}$
$\text{V}=0\cdot 003\text{ }{{\text{m}}^{3}}$
Temperature $=129{}^\circ \text{C}$
$129+273=402\text{K}$
Applying the ideal gas equation
PV = nRT
Where,
P = Pressure
V = Volume
n = No. of moles
R = Gas constant$8\cdot 314\text{J}{{\text{K}}^{-1}}\text{ mo}{{\text{l}}^{-1}}$
T = Temperature
PV = nRT where,$\text{n}=\dfrac{\text{W}}{\text{M}}$
Here, W= weight of molecule and M = molecular mass
Molecular mass of methane molecule$=12\cdot 01+4\cdot 04=16\cdot 05$
$\text{PV}=\dfrac{\text{W}}{\text{M}}\text{RT}$
Put all the values in equation
$\text{P}\times \text{0}\cdot 03=\dfrac{6\times 8\cdot 314\times 402}{16\cdot 05}$
$\text{P}=\dfrac{6\times 8\cdot 314\times 402}{16\cdot 05\times 0\cdot 003}$
On solving we get
$41647\cdot 7\text{ Pa}\cong \text{41648}$.
So, the correct answer is “Option C”.
Note:
The terms in the ideal gas equation should be clear. The value of gas constant must be known .No gas in the actual condition shows the ideal behavior that is known as real gas.
In actual practice no gas behaves as ideal gas . All the gas shows deviation. There is change in pressure and volume of gas. An ideal gas equation changed into a real gas or Vander wall gas equation.
Where V is the volume of the gas, R is the universal gas constant, T is temperature, P is pressure, and V is volume. a and b are constant terms. When the volume V is large, b becomes negligible in comparison with V, a/V2 becomes negligible with respect to P, and the van der Waals equation reduces to the ideal gas law, PV=nRT.
$\left[ \text{P}+\dfrac{\text{a}{{\text{n}}^{2}}}{{{\text{v}}^{2}}} \right]\left( \text{V}-\text{nb} \right)=\text{nRT}$
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

