
The point which divides the line joining the points $\left( {1,3,4} \right)$ and $\left( {4,3,1} \right)$ internally in the ratio$2:1$ is
$
a.\left( {2, - 3,3} \right) \\
b.\left( {2,3,3} \right) \\
c.\left( {\dfrac{5}{2},3,\dfrac{5}{2}} \right) \\
d.\left( { - 3,3,2} \right) \\
e.\left( {3,3,2} \right) \\
$
Answer
607.5k+ views
Hint: Apply section formula if a line divide the points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ in the ratio $\left( {m:n} \right)$ internally then
$x = \dfrac{{\left( {m.{x_2} + n.{x_1}} \right)}}{{m + n}},y = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}},z = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}}$
Given points are $\left( {1,3,4} \right)$ and $\left( {4,3,1} \right)$.
Let $\left( {1,3,4} \right) \equiv \left( {{x_1},{y_1},{z_1}} \right)$
And $\left( {4,3,1} \right) \equiv \left( {{x_2},{y_2},{z_2}} \right)$
Now, let the point $\left( {x,y,z} \right)$ divide the line internally in the ratio $2:1$
So, by section formula if a line divide the points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ in the ratio $\left( {m:n} \right)$ internally then
$x = \dfrac{{\left( {m.{x_2} + n.{x_1}} \right)}}{{m + n}},y = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}},z = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}}$
Here $m = 2{\text{ & }}n = 1$
$x = \dfrac{{\left( {2.\left( 4 \right) + 1.\left( 1 \right)} \right)}}{{2 + 1}},y = \dfrac{{\left( {2.\left( 3 \right) + 1.\left( 3 \right)} \right)}}{{2 + 1}},z = \dfrac{{\left( {2.\left( 1 \right) + 1.\left( 4 \right)} \right)}}{{2 + 1}}$
$ \Rightarrow \left( {x,y,z} \right) = \left( {\dfrac{9}{3},\dfrac{9}{3},\dfrac{6}{3}} \right) = \left( {3,3,2} \right)$
Hence option (e) is correct.
Note: In such types of questions the key concept we have to remember is that always recall the section formula which is stated above then substitute the given points in this formula and simplify, we will get the required points which divide the line internally in the ratio $2:1$.
$x = \dfrac{{\left( {m.{x_2} + n.{x_1}} \right)}}{{m + n}},y = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}},z = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}}$
Given points are $\left( {1,3,4} \right)$ and $\left( {4,3,1} \right)$.
Let $\left( {1,3,4} \right) \equiv \left( {{x_1},{y_1},{z_1}} \right)$
And $\left( {4,3,1} \right) \equiv \left( {{x_2},{y_2},{z_2}} \right)$
Now, let the point $\left( {x,y,z} \right)$ divide the line internally in the ratio $2:1$
So, by section formula if a line divide the points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ in the ratio $\left( {m:n} \right)$ internally then
$x = \dfrac{{\left( {m.{x_2} + n.{x_1}} \right)}}{{m + n}},y = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}},z = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}}$
Here $m = 2{\text{ & }}n = 1$
$x = \dfrac{{\left( {2.\left( 4 \right) + 1.\left( 1 \right)} \right)}}{{2 + 1}},y = \dfrac{{\left( {2.\left( 3 \right) + 1.\left( 3 \right)} \right)}}{{2 + 1}},z = \dfrac{{\left( {2.\left( 1 \right) + 1.\left( 4 \right)} \right)}}{{2 + 1}}$
$ \Rightarrow \left( {x,y,z} \right) = \left( {\dfrac{9}{3},\dfrac{9}{3},\dfrac{6}{3}} \right) = \left( {3,3,2} \right)$
Hence option (e) is correct.
Note: In such types of questions the key concept we have to remember is that always recall the section formula which is stated above then substitute the given points in this formula and simplify, we will get the required points which divide the line internally in the ratio $2:1$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

