
The point represented by $2 + i$ in the argand plane moves 1 unit eastwards, then 2 units northwards and finally from there $2\sqrt 2 $units in the south-westwards direction. Then its new position in the argand plane is at the point represented by:
A. -1-i
B. 2+2i
C. 1+i
D. -2-2i
Answer
583.2k+ views
Hint: In this question, we will move step by step. First move is toward the right. So, the real part of Z will get incremented. After this next move is towards the north, so the imaginary part now gets incremented. Finally we find the component of the south-east move to get the final location point.
Complete step-by-step answer:
Let the initial point be at A whose value is Z = 2+i
Now, point moves one unit eastward which means there will be increment in the real part of complex number Z.
$\therefore $ New position will be at B given by ${Z_1}$ = (2+1) +i = 3+i
And again the point moves 2 units northwards which means there will be an increment in the imaginary part of complex number${Z_1}$.
$\therefore $ New position will be at C given by${Z_2}$ = 3 + (2+1) i= 3+3i.
And finally it moves $2\sqrt 2 $ unit in the south-westwards direction. If we divide this move in vertical and horizontal component, then
Movement in south direction = $2\sqrt 2 \operatorname{Cos} {45^0} = 2\sqrt 2 \times \dfrac{1}{{\sqrt 2 }} = 2$.
Movement in west direction = $2\sqrt 2 \operatorname{Sin} {45^0} = 2\sqrt 2 \times \dfrac{1}{{\sqrt 2 }} = 2$ .
If we take north and east as positive then west and south move will be negative.
And the final position will be at D given by ${Z_3}$ = (3-2)+(3-2)i = 1+i.
Therefore, option C is correct.
So, the correct answer is “Option A”.
Note: Whenever we come to these types of problems always draw a figure with notify direction and remember east-west direction shows real part of complex number and north-south direction shows imaginary part of complex number.
Complete step-by-step answer:
Let the initial point be at A whose value is Z = 2+i
Now, point moves one unit eastward which means there will be increment in the real part of complex number Z.
$\therefore $ New position will be at B given by ${Z_1}$ = (2+1) +i = 3+i
And again the point moves 2 units northwards which means there will be an increment in the imaginary part of complex number${Z_1}$.
$\therefore $ New position will be at C given by${Z_2}$ = 3 + (2+1) i= 3+3i.
And finally it moves $2\sqrt 2 $ unit in the south-westwards direction. If we divide this move in vertical and horizontal component, then
Movement in south direction = $2\sqrt 2 \operatorname{Cos} {45^0} = 2\sqrt 2 \times \dfrac{1}{{\sqrt 2 }} = 2$.
Movement in west direction = $2\sqrt 2 \operatorname{Sin} {45^0} = 2\sqrt 2 \times \dfrac{1}{{\sqrt 2 }} = 2$ .
If we take north and east as positive then west and south move will be negative.
And the final position will be at D given by ${Z_3}$ = (3-2)+(3-2)i = 1+i.
Therefore, option C is correct.
So, the correct answer is “Option A”.
Note: Whenever we come to these types of problems always draw a figure with notify direction and remember east-west direction shows real part of complex number and north-south direction shows imaginary part of complex number.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

